Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data

  • Do, Jin Hwan (Bio-Food and Drug Research Center, Konkuk University) ;
  • Choi, Dong-Kug (Department of Biotechnology, Konkuk University)
  • Received : 2007.07.13
  • Accepted : 2007.11.05
  • Published : 2008.04.30

Abstract

The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

Keywords

Co-Expression;DNA Microarray;Fuzzy Clustering;Hierarchical Clustering;K-means;Self-organizing Map

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Belacel, N., Cuperlovic-Culf, M., Laflamme, M., and Ouellette, R. (2004). Fuzzy J-means and VNS methods for clustering genes from microarray data. Bioinformatics 20, 1690-1701 https://doi.org/10.1093/bioinformatics/bth142
  2. Boutros, P.C., and Okey, A.B. (2005). Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief. Bioinform. 6, 331-343 https://doi.org/10.1093/bib/6.4.331
  3. Dudoit, S., and Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 3, research0036
  4. Heyer, L.J., Kruglyak, S., and Yooseph, S. (1999). Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 9, 1106-1115 https://doi.org/10.1101/gr.9.11.1106
  5. Lu, Y., Lu, S., Fotouhi, F., Deng, Y., and Brown, S.J. (2004b). Incremental genetic K-means algorithm and its application in gene expression data analysis. BMC Bioinformatics 5, 172 https://doi.org/10.1186/1471-2105-5-172
  6. Macnaughton-Smith, P., Williams, W.T., Dale, M.B., and Mockett, L.G. (1964). Dissimilarity analysis: a new technic of hierarchical subdivision. Nature 202, 1034-1035 https://doi.org/10.1038/2021034a0
  7. Sheng, Q., Moreau, Y., and De Moor, B. (2003). Biclustering microarray data by Gibbs sampling. Bioinformatics 19 (Suppl. 2), ii196-ii205
  8. Slonim, D.K. (2002). From patterns to pathways: gene expression data analysis comes of age. Nat. Genet. 32 (Suppl. 2), 502-508 https://doi.org/10.1038/ng1033
  9. Woolf, P.J., and Wang, Y. (2000). A fuzzy logic approach to analyzing gene expression data. Physiol. Genomics 3, 9-15 https://doi.org/10.1152/physiolgenomics.2000.3.1.9
  10. Wu, F.X., Zhang, W.J., and Kusalik, A.J. (2006). Determination of the minimum number of microarray experiments for discovery of gene expression patterns. BMC Bioinformatics 7 (Suppl. 4), S13 https://doi.org/10.1186/1471-2105-7-13
  11. Gasch, A.U., and Eisen, M.B. (2002). Exploring the conditional co-regulation of yeast gene expression through fuzzy Kmeans clustering. Genome Biol. 3, 1-22
  12. Kim, K., Zhang, S., Jiang, K., Cai, L., Lee, I.-B., Feldman, L.J., and Huang, H. (2007). Measuring similarities between gene expression profiles through new data transformation. BMC Bioinformatics 8, 29 https://doi.org/10.1186/1471-2105-8-29
  13. Kohonen, T. (1990). The self-organizing map. Proc. IEEE 78, 1464-1479
  14. Hardin, J., Mitani, A., Hicks, L., and VanKoten, B. (2007). A robust measure of correlation between two genes on a microarray. BMC Bioinformatics 8, 220 https://doi.org/10.1186/1471-2105-8-220
  15. Fowlkes, E.B., and Mallows, C.L. (1983). A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553-584 https://doi.org/10.2307/2288117
  16. Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L., and Somogyi, R. (1998). Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA 95, 334-339
  17. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511 https://doi.org/10.1038/35000501
  18. Chipman, H. (2006). Hybrid hierarchical clustering with applications to microarray data. Biostatistics 7, 286-301 https://doi.org/10.1093/biostatistics/kxj007
  19. Fu, L., and Medico, E. (2007). FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8, 3 https://doi.org/10.1186/1471-2105-8-3
  20. Van der Laan, M., Pollard, K.S., and Bryan, J. (2003). A new partitioning around medoids algorithm. J. Stat. Comput. Simul. 73, 575-584 https://doi.org/10.1080/0094965031000136012
  21. Kaufman, L., and Rousseeuw, P. (1990). Finding groups in data (New York, NY: Wiley)
  22. Su, M., and Chang, H. (2001). A new model of self-organizing neural networks and its application in data projection. IEEE Trans. Neural Netw. 12, 153-158 https://doi.org/10.1109/72.896805
  23. Azuaje, F. (2003). Clustering-based approaches to discovering and visualizing mciroarray data patterns. Brief. Bioinform. 4, 31-42 https://doi.org/10.1093/bib/4.1.31
  24. Balasubramaniyan, R., Hullermeier, E., Weskamp, N., and Kamper, J. (2005). Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069-1077 https://doi.org/10.1093/bioinformatics/bti095
  25. Xing, B., Greenwood, C.M., and Bull, S.B. (2007). A hierarchical clustering method for estimating copy number variation. Biostatistics 8, 632-653 https://doi.org/10.1093/biostatistics/kxl035
  26. Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms (New York: Plenum Press)
  27. Do, J.H., and Choi, D.K. (2006). Normalization of microarray data: single-labeled and dual-labeled arrays. Mol. Cells 22, 254-261
  28. Hsu, A.L., Tang, S.-L., and Halgamuge, S.K. (2003). An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. Bioinformatics 19, 2131-2140 https://doi.org/10.1093/bioinformatics/btg296
  29. Wang, J., Bo, T.H., Jonassen, I., and Hovig, E. (2003). Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4, 60 https://doi.org/10.1186/1471-2105-4-60
  30. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaassenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537 https://doi.org/10.1126/science.286.5439.531
  31. Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000). Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601-620 https://doi.org/10.1089/106652700750050961
  32. Gersho, A., and Gray, R. (1992). Vector Quantization and Signal Compression (Boston USA: Kluwer Academic Publishers)
  33. Tan, P.N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining (Boston: Addison-Wesley)
  34. Dembele, D., and Kastner, P. (2003). Fuzzy C-means for clustering microarray data. Bioinformatics 19, 973-980 https://doi.org/10.1093/bioinformatics/btg119
  35. Eisen, M.B., Spellman, P.T., Brown P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868
  36. Ikota, H., Kinjo, S., Yokoo, H., and Nakazato, Y. (2006). Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology. Acta Neuropathol. (Berl) 111, 475-482 https://doi.org/10.1007/s00401-006-0060-1
  37. Lu, Y., Lu, S., Fotouhi, F., Deng, Y., and Brown, S.J. (2004a). FGKA: a fast genetic K-means clustering algorithm. Proceedings of the 2004 ACM symposium on Applied computing (SAC), Nicosia, Cyprus
  38. Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002). A stability based method for discovering structure in clustered data. Pac. Symp. Biocomput. 7, 6-17
  39. Belacel, N., Wang, Q., and Cuperlovic-culf, M. (2006). Clustering methods for microarray gene expression data. Omics 10, 507-531 https://doi.org/10.1089/omi.2006.10.507
  40. Ressom, H., Wang, D., and Natarajan, P. (2003). Adaptive double self-organizing maps for clustering gene expression profiles. Neural Netw. 16, 633-640 https://doi.org/10.1016/S0893-6080(03)00102-3
  41. Tseng, G. (2004). A comparative review of gene clustering in expression profile. eighth international conference on control, automation, robotics and vision (ICARCV). 1320-1324
  42. Jain, A.K., and Bubes, R.C. (1988). Algorithms for Clustering Data (NJ: Prentice Hall, Englewood Cliffs)
  43. Raychaudhuri, S., Sutphin, P.D., Chang, J.T., and Altman, R.B. (2001). Basic microarray analysis: grouping and feature reduction. Trends Biotechnol. 19, 189-193 https://doi.org/10.1016/S0167-7799(01)01599-2
  44. Jiang, D., Pei, J., and Zhang, A. (2003). Towards interactive exploration of gene expression patterns. ACM SIGKDD Explor Newslett 5, 79-90 https://doi.org/10.1145/980972.980983
  45. Ihmels, J., Friedlander, G.., Bergman, S., Sarig, O., Ziv, Y., and Barkai, N. (2002). Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370-377 https://doi.org/10.1038/ng941
  46. Krishna, K., and Narasimha Murty, M. (1999). Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B 29, 433-439 https://doi.org/10.1109/3477.764879