DOI QR코드

DOI QR Code

Computational identification of significantly regulated metabolic reactions by integration of data on enzyme activity and gene expression

  • Nam, Ho-Jung (Department of Bio and Brain Engineering, KAIST) ;
  • Ryu, Tae-Woo (Omics Integration Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Ki-Young (Department of Bioengineering, University of California at San Diego) ;
  • Kim, Sang-Woo (Department of Bio and Brain Engineering, KAIST) ;
  • Lee, Do-Heon (Department of Bio and Brain Engineering, KAIST)
  • Published : 2008.08.31

Abstract

The concentrations and catalytic activities of enzymes control metabolic rates. Previous studies have focused on enzyme concentrations because there are no genome-wide techniques used for the measurement of enzyme activity. We propose a method for evaluating the significance of enzyme activity by integrating metabolic network topologies and genome-wide microarray gene expression profiles. We quantified the enzymatic activity of reactions and report the 388 significant reactions in five perturbation datasets. For the 388 enzymatic reactions, we identified 70 that were significantly regulated (P-value < 0.001). Thirty-one of these reactions were part of anaerobic metabolism, 23 were part of low-pH aerobic metabolism, 8 were part of high-pH anaerobic metabolism, 3 were part of low-pH aerobic reactions, and 5 were part of high-pH anaerobic metabolism.

Keywords

References

  1. Friedrich, C. G. (1998) Physiology and genetics of sulfur- oxidizing bacteria. Adv. Microb. Physiol. 39, 235-289. https://doi.org/10.1016/S0065-2911(08)60018-1
  2. Smith, E. and Morowitz, H. J. (2004) Universality in intermediary metabolism. Proc. Natl. Acad. Sci. U.S.A. 101, 13168-13173. https://doi.org/10.1073/pnas.0404922101
  3. Patil, K. R. and Nielsen, J. (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. U.S.A. 102, 2685-2689. https://doi.org/10.1073/pnas.0406811102
  4. Joyce, A. R. and Palsson, B. O. (2006) The model organism as a system: integrating 'omics' data sets. Nat. Rev. Mol. Cell. Biol. 7, 198-210. https://doi.org/10.1038/nrm1857
  5. Herrgard, M. J., Lee, B. S., Portnoy, V. and Palsson, B. O. (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome. Res. 16, 627-635. https://doi.org/10.1101/gr.4083206
  6. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. and Palsson, B. O. (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92-96. https://doi.org/10.1038/nature02456
  7. Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R., Aebersold, R. and Hood, L. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929-934. https://doi.org/10.1126/science.292.5518.929
  8. Yeang, C. H. and Vingron, M. (2006) A joint model of regulatory and metabolic networks. BMC Bioinformatics. 7, 332. https://doi.org/10.1186/1471-2105-7-332
  9. Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y. and Barkai, N. (2002) Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370-377. https://doi.org/10.1038/ng941
  10. Ihmels, J., Levy, R. and Barkai, N. (2004) Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol. 22, 86-92. https://doi.org/10.1038/nbt918
  11. Covert, M. W. and Palsson, B. O. (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J. Biol. Chem. 277, 28058-28064. https://doi.org/10.1074/jbc.M201691200
  12. Covert, M. W. and Palsson, B. O. (2003) Constraints-based models: regulation of gene expression reduces the steadystate solution space. J. Theor. Biol. 221, 309-325. https://doi.org/10.1006/jtbi.2003.3071
  13. Cakir, T., Patil, K. R., Onsan, Z., Ulgen, K. O., Kirdar, B. and Nielsen, J. (2006) Integration of metabolome data with metabolic networks reveals reporter reactions. Mol. Syst. Biol. 2, 50.
  14. Gutteridge, A., Kanehisa, M. and Goto, S. (2007) Regulation of metabolic networks by small molecule metabolites. BMC Bioinformatics. 8, 88. https://doi.org/10.1186/1471-2105-8-88
  15. Choi, M. M., Kim, E. A., Choi, S. Y., Kim, T. U., Cho, S. W. and Yang, S. J. (2007) Inhibitory properties of nervespecific human glutamate dehydrogenase isozyme by chloroquine. J. Biochem. Mol. Biol. 40, 1077-1082.
  16. Chen, M., Wei, H., Cao, J., Liu, R., Wang, Y. and Zheng, C. (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J. Biochem. Mol. Biol. 40, 396-403. https://doi.org/10.5483/BMBRep.2007.40.3.396
  17. Ito, J., Cox, E. C. and Yanofsky, C. (1969) Anthranilate synthetase, an enzyme specified by the tryptophan operon of Escherichia coli: purification and characterization of component I. J. Bacteriol. 97, 725-733. https://doi.org/10.1002/path.1710970419
  18. Vlahos, C. J. and Dekker, E. E. (1990) Active-site residues of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli. Bromopyruvate inactivation and labeling of glutamate 45. J. Biol. Chem. 265, 20384-20389.
  19. Baldoma, L. and Aguilar, J. (1988) Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation. J. Bacteriol. 170, 416-421. https://doi.org/10.1128/jb.170.1.416-421.1988
  20. Green, J. and Paget, M. S. (2004) BACTERIAL REDOX SENSORS. Nature Reviews Microbiology. 2, 954-966. https://doi.org/10.1038/nrmicro1022
  21. Maurer, L. M., Yohannes, E., Bondurant, S. S., Radmacher, M. and Slonczewski, J. L. (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 187, 304-319. https://doi.org/10.1128/JB.187.1.304-319.2005
  22. Yohannes, E., Barnhart, D. M. and Slonczewski, J. L. (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol. 186, 192-199. https://doi.org/10.1128/JB.186.1.192-199.2004
  23. Stancik, L. M., Stancik, D. M., Schmidt, B., Barnhart, D. M., Yoncheva, Y. N. and Slonczewski, J. L. (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184, 4246-4258 . https://doi.org/10.1128/JB.184.15.4246-4258.2002
  24. Blankenhorn, D., Phillips, J. and Slonczewski, J. L. (1999) Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J. Bacteriol. 181, 2209-2216.
  25. Foster, J. W. (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol. 2, 898-907. https://doi.org/10.1038/nrmicro1021
  26. Slonczewski, J. L. a. J. W. F. (1996) pH-related genes and survival at extreme pH. ASM Press. 1539-1552
  27. Hayes, E. T., Wilks, J. C., Sanfilippo, P., Yohannes, E., Tate, D. P., Jones, B. D., Radmacher, M. D., BonDurant, S. S. and Slonczewski, J. L. (2006) Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol. 6, 89. https://doi.org/10.1186/1471-2180-6-89
  28. Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M. and Karp, P. D. (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 33, D334-D337. https://doi.org/10.1093/nar/gki108