DOI QR코드

DOI QR Code

Effects of Cell Status of Bovine Oviduct Epithelial Cell (BOEC) on the Development of Bovine IVM/IVF Embryos and Gene Expression in the BOEC Used or Not Used for the Embryo Culture

  • Jang, H.Y. (College of Animal Life Science, Kangwon National University) ;
  • Jung, Y.S. (College of Animal Life Science, Kangwon National University) ;
  • Cheong, H.T. (School of veterinary Medicine, Kangwon National University) ;
  • Kim, J.T. (School of veterinary Medicine, Kangwon National University) ;
  • Park, C.K. (College of Animal Life Science, Kangwon National University) ;
  • Kong, H.S. (Department of Genomic Engineering, Genomic Informatics Center, Hankyong National University) ;
  • Lee, H.K. (Department of Genomic Engineering, Genomic Informatics Center, Hankyong National University) ;
  • Yang, B.K. (College of Animal Life Science, Kangwon National University)
  • Received : 2007.07.24
  • Accepted : 2007.11.16
  • Published : 2008.07.01

Abstract

The objective of this study was to investigate the effects of cell status of BOEC on development of bovine IVM/IVF embryos and gene expression in BOEC before or after culturing of embryos. The developmental rates beyond morula stage in the BOEC co-culture group was significantly higher than in the control group (p<0.05). In particular, blastocyst production in the BOEC co-culture group (28.3%) was dramatically increased compared with the control group (7.2%). In the in vitro development of bovine IVM/IVF embryos according to cell status, the developmental rates beyond morula stage in the primary culture cell (PCC) co-culture group were the highest of all experimental groups. Expression of genes related to growth (TGF-${\beta}$ EGF and IGFBP), apoptosis (Bax, Caspase-3 and p53) and antioxidation (CuZnSOD, MnSOD, Catalase and GPx) in different status cells of BOEC for embryo culture was detected by RT-PCR. While EGF gene was detected in isolated fresh cells (IFC) and PCC, TGF-${\beta}$ and IGFBP were found in IFC or PCC after use in the embryo culture, respectively. Caspase-3 and Bax genes were detected in all experimental groups regardless of whether the BOEC was used or not used in the embryo culture. However, p53 gene was found in IFC of both conditions for embryo culture and in frozen/thawed culture cells (FPCC) after use in the embryo culture. Although antioxidant genes examined were detected in all experimental groups before using for the embryo culture, these genes were not detected after use. This study indicated that the BOEC co-culture system used for in vitro culture of bovine IVF embryos can increase the developmental rates, and cell generations and status of BOEC might affect the in vitro development of bovine embryos. The BOEC monolayer used in the embryo culture did not express the growth factors (TGF-${\beta}$ and EGF) and enzymatic antioxidant genes, thereby improving embryo development in vitro.

Keywords

Bovine Oviduct Epithelial Cell;Bovine IVM/IVF Embryos;Growth Factor Gene;Apoptosis Gene;Antioxidant Gene

Acknowledgement

Supported by : Kangwon National University

References

  1. Kim, J. Y., M. C. Park, H. Park, Y. S. Park, H. Park, J. H. Lee and J. M. Kim. 2007. Addition of macromolecules to PZM-3 culture medium on the development and hatching of in vitro porcine embryos. Asian-Aust. J. Anim. Sci. 20:1820-1826. https://doi.org/10.5713/ajas.2007.1820
  2. Kreysing, U., T. Nagai and H. Niemann. 1997. Male-dependent variability of fertilization and embryo development in two bovine in vitro fertilization systems and the effects of casein phosphopeptides (CPPs). Reprod. Fertil. Dev. 9(4):465-474. https://doi.org/10.1071/R96097
  3. Li, J., C. A. Bombeck, S. Yang, Y. M. Kim and T. R. Billiar. 1999. Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes. J. Biol. Chem. 274:17325-17333. https://doi.org/10.1074/jbc.274.24.17325
  4. Liu, L. P. S., S. T. H. Chan, P. C. Ho and W. S. B.Yeung. 1998. Partial purification of embryotrophic factors from human oviductal cells. Hum. Reprod. 13:1613-1619. https://doi.org/10.1093/humrep/13.6.1613
  5. Muller, M., S. Wilder, D. Bannasch, D. Israeli, K. Lehlbach, M. Li-wever, S. L. Friedman, P. R. Galle, M. Stremmel, M. Oren and P. H. Krammer. 1998. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188:2033-2045. https://doi.org/10.1084/jem.188.11.2033
  6. Nasr-Esfahani, M. H., N. J. Winston and M. H. Johnson. 1992. Effects of glucose, glutamine, ethylenediaminetetra acetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J. Reprod. Fertil. 96:219-231. https://doi.org/10.1530/jrf.0.0960219
  7. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162(1):156-159.
  8. Carolan, C., P. Lonergan, A. Van Langendonckt and P. Mermillod. 1995. Factors affecting bovine embryo development in synthetic oviduct fluid following oocyte maturation and fertilization in vitro. Theriogenol. 43(6):1115-1128. https://doi.org/10.1016/0093-691X(95)00075-J
  9. de Lamirande, E. and C. Gagnon. 1992. Reactive oxygen species and human spermatozoa. I. Effect on the motility of intact spermatozoa and on sperm axonemes. J. Androl. 13:368-378.
  10. Donnay, I., A. Van Langendonckt, P. Auquier, B. Grisart, A. Vansteenbrugge, A. Massip and F. Dessy. 1997. Effects of coculture and embryo number on the in vitro development of bovine embryos. Theriogenol. 47(8):1549-1561. https://doi.org/10.1016/S0093-691X(97)00160-X
  11. Gardner, D. K. and M. Lane. 2005. Ex vivo early embryo development and effects on gene expression and imprinting. Reprod. Fertil. Dev. 17:361-370. https://doi.org/10.1071/RD04103
  12. Guerin, P., E. I. Mouatassim and Y. Menezo. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 7:175-189. https://doi.org/10.1093/humupd/7.2.175
  13. Halliwell, B. and O. I. Aruoma. 1991. DNA damage by oxygenderived species. Its mechanism and measurement in mammalian systems. FEBS. Lett. 281:9-19. https://doi.org/10.1016/0014-5793(91)80347-6
  14. Harvey, M. B., M. Y. Arcellana-Panlilio, X. Zhang, G. A. Schultz and A. J. Watson. 1995. Expression of genes encoding antioxidant enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo coculture. Biol. Reprod. 53(3):532-540. https://doi.org/10.1095/biolreprod53.3.532
  15. Jang, H. Y., H. S. Kong, K. D. Choi, G. J. Jeon, B. K. Yang, C. K. Lee and H. K. Lee. 2005. Effect of melatonin on gene expression of IVM/IVF porcine embryos. Asian-Aust. J. Anim. Sci. 18:17-21. https://doi.org/10.5713/ajas.2005.17
  16. Jurisicova, A. and B. M. Acton. 2004. Deadly decisions: the role of genes regulating programmed cell death in human preimplantation embryo development. Reprod. 128:281-291. https://doi.org/10.1530/rep.1.00241
  17. Johnson, M. H. and M. H. Nasr-Esfahani. 1994. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro. Bioessays 16(1):31-38. https://doi.org/10.1002/bies.950160105
  18. Kim, D. H., D. S. Ko, H. C. Lee, H. J. Lee, W. I. Park and S. S. Kim. 2004. Comparison of maturation, fertilization, development and gene expression of mouse oocytes grown in vitro and in vivo. J. Assist. Reprod. Genet. 21:233-240. https://doi.org/10.1023/B:JARG.0000042008.83699.cc
  19. Bavister, B. D. 1992. Co-culture for embryo development: is it really necessary? Hum. Reprod. 7(10):1339-1341. https://doi.org/10.1093/oxfordjournals.humrep.a137569
  20. Brackett, B. G., D. Bousquet, M. L. Boice, W. J. Donawick, J. F. Evans and M. A. Dressel. 1982. Normal development following in vitro fertilization in the cow. Biol. Reprod. 27(1):147-158. https://doi.org/10.1095/biolreprod27.1.147
  21. Orsi, N. M. and J. B. Reischl. 2006. Mammalian embryo coculture: Trials and tribulations of a misunderstood method. Theriogenol. (in press).
  22. Ouhibi, N., J. Hamidi, J. Guillaud and Y. Menezo. 1990. Coculture of 1-cell mouse embryos on different cell supports. Hum. Reprod. 5:737.
  23. Rexroad, C. E. and A. M. Powell. 1988. Coculture of ovine ova with oviductal cells in medium 199. J. Anim. Sci. 66:947.
  24. Rief, S., F. Sinowatz-Stojkovic, R. Einspanier, E. Wolf and K. Prelle. 2002. Effect of a novel co-culture system on development, metabolism and gene expression of bovine embryos produced in vitro. Reprod. 124:543-556. https://doi.org/10.1530/rep.0.1240543
  25. Uberti, D., E. Yavin, S. Gil, K. R. Ayasola, N. Goldfinger and A. Rotter. 1999. Hydrogen peroxide induces nuclear translocation of p53 and apoptosis in cells of oligodendroglia origin. Mol. Brain Res. 65:167-175. https://doi.org/10.1016/S0169-328X(98)00339-8
  26. Vanroose, G., A. Van Soom and A. de Kruif. 2001. From co-culture to defined medium: State if the art and practical considerations. Reprod. Dom. Anim. 36:25-28. https://doi.org/10.1046/j.1439-0531.2001.00264.x
  27. Yim, S. V., K. M. Kim, S. S. Kim, J. A. Han, H. Z. Lea and Y. M. Kim. 2000. Serotonin induces apoptosis in PGT-beta pineal gland tumor cells. Jpn. J. Pharmacol. 84:71-74. https://doi.org/10.1254/jjp.84.71
  28. Brackett, B. G. and G. Oliphant. 1975. Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12:260-274. https://doi.org/10.1095/biolreprod12.2.260
  29. Carolan, C., P. Lonergan, H. Khatir and P. Mermillod. 1996. In vitro production of bovine embryos using individual oocytes. Mol. Reprod. Dev. 45(2):145-150. https://doi.org/10.1002/(SICI)1098-2795(199610)45:2<145::AID-MRD6>3.0.CO;2-T
  30. Lee, Y. S., S. A. Ock, S. K. Cho, B. G. Jeon, T. Y. Kang, S. Y. Choe and G. J. Rho. 2007. Effect of donor cell types and passages on preimplantation development and apoptosis in porcine cloned embryos. Asian-Aust. J. Anim. Sci. 20:711-717. https://doi.org/10.5713/ajas.2007.711