Effects of Enzyme Supplementation on Growth, Intestinal Content Viscosity, and Digestive Enzyme Activities in Growing Pigs Fed Rough Rice-based Diet

  • Wang, M.Q. (Animal Science College of Zhejiang University, and the Key Laboratory of Molecular Animal Nutrition Ministry of Education) ;
  • Xu, Z.R. (Animal Science College of Zhejiang University, and the Key Laboratory of Molecular Animal Nutrition Ministry of Education) ;
  • Sun, J.Y. (Animal Science College of Zhejiang University, and the Key Laboratory of Molecular Animal Nutrition Ministry of Education) ;
  • Kim, B.G. (Department of Animal and Food Sciences, University of Kentucky)
  • 투고 : 2007.05.19
  • 심사 : 2007.07.22
  • 발행 : 2008.02.01


The purpose of the present study was to investigate the effects of exogenous non-starch polysaccharides (NSP) enzymes on performance, intestinal content viscosity and digestive enzyme activities of growing pigs fed a rough rice-based diet. A total of 60 crossbred barrows with an initial body weight of 35.16 kg (SD = 0.82) were blocked by body weight and randomly assigned to two treatments with three replications. Each group was fed the diet based on rice with or without exogenous NSP enzymes (2 g/kg of diet). During the 70 days of the feeding trial, all pigs were given free access to feed and water. At the end of the feeding trial, six pigs from each treatment were randomly selected and slaughtered to collect intestinal digesta, intestinal mucosa, and pancreas. The addition of NSP enzymes improved average daily gain (p<0.05) and feed:gain (p<0.05), and decreased viscosity of digesta in the jejunum (p<0.001) and ileum (p<0.01) of pigs. The supplementation of NSP enzymes increased activities of protease (p<0.01), trypsin (p<0.01) and ${\alpha}$-amylase (p<0.05) in duodenal contents. However, digestive enzymes in the pancreas, jejunal and ileal mucosa were unaffected by the supplemental NSP enzymes (p>0.10). The results indicate that the addition of NSP enzymes to rough rice-based diets improved performance of pigs, reduced viscosity and increased digestive activity in the small intestine.


  1. Henry, R. J. 1984. A simplified enzymic method for the determination of 1,3-1,4-$\beta$-glucans in barley. J. Inst. Brew. 90:178-180.
  2. Heitlinger, L. A. 1991. Glucose flux from dietary disaccharides: all sugars are not absorbed at equal rates. Am. J. Physiol. 261:818-822.
  3. Henry, R. J. 1985. A comparison of the non-starch carbohydrates in creal grains. J. Sci. Food. Agric. 36:1243-1253.
  4. Graham, H., W. Lowgren, D. Pettersson and P. Aman. 1988. Effect of enzyme supplementation on digestion of a barley/pollardbased pig diet. Nutr. Rep. Int. 38:1073-1079.
  5. Erlanger, B. F., N. Kokowsky and W. Cohen. 1961. The preparation and properties of two new chromogenic substrate of trypsin. Arch. Biochem. Biophys. 95:271-278.
  6. Erlanger, B. F., F. Edel and A. G. Cooper. 1966. The action of chymotrypsin on two new chromogenic substrates. Arch. Biochem. Biophys. 115:206-210.
  7. Chesson, A. 1993. Feed enzymes. Anim. Feed Sci. Technol. 45:65-79.
  8. Inborr, J. and M. R. Bedford. 1994. Stability of feed enzymes to steam pelleting during feed processing. Anim. Feed Sci. Technol. 46:179-196.
  9. Ikegami, S., F. Tsnchihashi, H. Harada, N. Tsuchihashi, E. Nishide and S. Innami. 1990. Effects of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats. J. Nutr. 120:353-360.
  10. Jensen, M. S., M. J. Thaela, S. G. Pierzynowski and K. Jakobsen. 1996. Exocrine pancreatic secretion in young pigs fed barley-based diets supplemented with beta-glucanase. J. Anim. Physiol. Anim. Nutr. 75:231-241.
  11. Jensen, M. S., K. E. Bach Knudsen, J. Inborr and K. Jakobsen. 1998. Effect of $\beta$-glucanase supplementation on pancreatic enzyme activity and nutrient digestibility in piglets fed diets based on hulled and hulless barley varieties. Anim. Feed Sci. Technol. 72:329-345.
  12. Inborr, J., M. Schmitz and F. Ahrens. 1993. Effect of adding fiber and starch degrading enzymes to a barley/wheat based diet on performance and nutrient digestibility in different segments of the small intestine of early weaned pigs. Anim. Feed Sci. Technol. 44:113-127.
  13. Iwamori, M., Y. Iwamori and N. Ito. 1997. Sulfated lipids as inhibitors of pancreatic trypsin and chymotrypsin in epithelium of the mammalian digestive tract. Biochem. Biophys. Res. Commun. 237:262-265.
  14. Kern, H. F., U. Rausch and G. A. Scheele. 1987. Regulation of gene expression in pancreatic adaptation to nutritional substrates or hormones. Gut 28 (Suppl.):89-94.
  15. Kim, B. G., J. Z. Tian, J. S. Lim, D. Y. Kil, H. Y. Jeon, Y. K. Chung and Y. Y. Kim. 2004. The influences of enzyme complex supplementation on growth, ileal and apparent fecal digestibility, and morphology of small intestine in pigs. Asian-Aust. J. Anim. Sci. 17:1729-1735.
  16. Li, W. F., J. Y. Sun and Z. R. Xu. 2004. Effect of NSP degrading enzyme on in vitro digestion of barley. Asian-Aust. J. Anim. Sci. 17:122-126.
  17. Lindberg, J. E., A. Arvidsson and J. Wang. 2003. Influence of naked barley cultivar with normal, amylase-rich or amylopectin-rich starch and enzyme supplementation on digestibility and piglet performance. Anim. Feed Sci. Technol. 104:121-131.
  18. Schram, E., S. Moore and E. W. Bigwood. 1954. Chromatographic determination of cystine as cystic acid. Biochem. J. 57:33-37.
  19. Sell, J. L., O. Koldovsky and B. L. Reid. 1989. Intestinal disaccharidases of young tuckeys: temporal development and influence of diet composition. Poult. Sci. 68:265-277.
  20. SAS (Statistical Analysis System Inc.). 1989. SAS/STAT User's Guide, Version 6. SAS Institute Inc., Cary, NC
  21. Schneeman, B. O., B. D. Richter and L. R. Jacobs. 1982. Response to dietary wheat bran in the exocrine pancreas and intestine of rats. J. Nutr. 112:283-286.
  22. NRC. 1998. Nutrient Requirements of Swine. 10th ed. Natl. Acad. Press, Washington, DC.
  23. Omogbenigun, F. O., C. M. Nyachoti and B. A. Slominski. 2004. Dietary supplementation with multienzyme preparations improves nutrient utilization and growth performance in weaned pigs. J. Anim. Sci. 82:1053-1061.
  24. Partridge, G. G. 2001. The role and efficacy of carbohydrase enzymes in pig nutrition (Ed. M. R. Bedford and G. G. Partridge), Enzymes in Farm Animal Nutrition., CAB International, pp. 161-198
  25. Li, X. L., S. L. Yuan, X. S. Piao, C. H. Lai, J. J. Zang, Y. H. Ding, L. J. Han and In K. Han. 2006. The nutritional value of brown rice and maize for growing pigs. Asian-Aust. J. Anim. Sci. 19:892-897.
  26. Lowe, S. E., M. K. Theodorou and A. P. Trinci. 1987. Cellulase and xylanase of an anaerobic rumen fugus grown on wheat straw, wheat straw holocellulose, cellulose, xylan. Appl. Environ. Microbiol. 53:1216-1223.
  27. Thomsen, L. L. and C. Tasman-Jones. 1982. Disaccharidase levels of the rat jejunum are altered by dietary fibre. Digestion 23:253-258.
  28. Stock-Damge, C., M. Aprahamian, F. Raul, W. Humbert and P. Bouchet. 1984. Effects of wheat bran on the exocrine pancreas and the small intestinal mucosa in the dog. J. Nutr. 114:1076-1082.
  29. Thacker, P. A., G. L. Campbell and J. Grootwassink. 1991. The effect of enzyme supplementation on the nutritive value of ryebased diets for swine. Can. J. Anim. Sci. 71:489-496.
  30. Shen, T. and J. A. Wang. 1990. Biochemistry. High Educational Press, Beijing, pp. 232-233.
  31. Zebrowska, T. and A. G. Low. 1987. The influence of diets based on whole wheat, wheat flour and wheat bran on exocrine pancreatic secretion in pigs. J. Nutr. 117:1212-1216
  32. Yin, Y. L., Z. Y. Deng, H. L. Huang, T. J. Li and H. Y. Zhong. 2004b. The effect of arabinoxylanase and protease supplementation on nutritional value of diets containing wheat bran or rice bran in growing pigs. J. Anim. Feed Sci. 13:445-461
  33. Yin, Y. L., S. K. Baidoo, L. Z. Jin, Y. G. Liu, H. Schulze and P. H. Simmins. 2001. The effect of different carbohydrase and protease supplementation on apparent (ileal and overall) digestibility of nutrients of five hulless barley varieties in young pigs. Livest. Prod. Sci. 71:109-120.
  34. Yin, Y. L., Z. Y. Deng, H. L. Huang, H. Y. Zhong, Z. P. Hou, J. Gong and Q. Liu. 2004a. Nutritional and health functions of carbohydrate for pigs. J. Anim. Feed Sci. 13: 523-538.
  35. Yin, Y. L., J. D. McEvoy, H. Schulze, W. B. Souffrant, U. Hennig and K. J. McCracken. 2000. Apparent digestibility (ileal and overall) of nutrients and endogenous nitrogen losses in growing pigs fed wheat (var. Soissons) or its by-products without or with xylanase supplementation. Livest. Prod. Sci. 62:119-132.
  36. Baas, T. C. and P. A. Thacker. 1996. Impact of gastric pH on dietary enzyme activity and survivability in swine fed $\beta$- glucanase supplemented diets. Can. J. Anim. Sci. 76:245-252.
  37. Bailey, M. J. and K. Poutanen. 1989. Production of xylanolytic enzymes by strains of Aspergillus. Appl. Microbiol. Biotechnol. 30:5-10.
  38. Alpers, D. H. and F. J. Tedesco. 1975. The possible role of pancreatic proteases in the turnover of intestinal brush border proteins. Biochim. Biophys. Acta. 401:28-40.
  39. AOAC. 1995. Official Methods of Analysis. 16th ed. Assoc. Off. Anal. Chem., Arlington, VA.
  40. Brannon, P. M. 1990. Adaptation of the exocrine pancreas to diet. Ann. Rev. Nutr. 10:85-105.
  41. Bedford, M. R., J. F. Patience, H. L. Classen and J. Inborr. 1992. The effect of dietary enzyme supplementation of rye- and barley-based diets on digestion and subsequent performance in weanling pigs. Can. J. Anim. Sci. 72:97-105.
  42. Choct, M. and G. Annison. 1992. Anti-Nutritive effect of wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Br. Poult. Sci. 33:821-834.
  43. Dahlqvist, A. 1964. Method for assay of intestinal disaccharidase. Anal. Biochem. 7:18-25.
  44. Erfle, J. D., R. M. Teather, R. M. Wood and J. E. Irvin. 1988. Purification and properties of a 1,3-1,4-$\beta$-D-glucanase (lichenase, 1,3-1,4-$\beta$-D-glucanohydrolase, EC3.2.1.73) from bacteroides saccinogenes cloned in E. coli. Biochem. J. 255:833-841
  45. Ensminger, A. H., M. E. Ensminger, J. E. Konlande and J. R. K. Robson. 1983. Foods and Nutrition Encyclopedia. Vol. 2. Pegus Press, Clovis, CA, USA, pp. 1928-1943
  46. Danicke, S., G. Dusel, H. Jeroch and H. Kluge. 1999. Factors affecting efficiency of NSP-degrading enzymes in rations for pigs and poultry. Agribiol. Res. 52:1-24.
  47. Diebold, G., R. Mosenthin, H. P. Piepho and W. C. Sauer. 2004. Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces. J. Anim. Sci. 82:2647-2656.
  48. Chiang, C. C., B. Yu and P. W. Chiou. 2005. Effects of xylanase supplementation to wheat-based diet on the performance and nutrient availability of broiler chickens. Asian-Aust. J. Anim. Sci. 18:1141-1146.
  49. Erlanson-Albertsson, C., A. Larsson and R. Duan. 1987. Secretion of pancreatic lipase and colipase from rat pancreas. Pancreas 2:531-535.
  50. Hopwood, D. E., D. W. Pethick, J. R. Pluske and D. J. Hampson. 2004. Addition of pearl barley to a rice-based diet for newly weaned piglets increases the viscosity of the intestinal contents, reduces starch digestibility and exacerbates post-weaning colibacillosis. Br. J. Nutr. 92:419-427.

피인용 문헌

  1. Effects of whole-grain paddy rice replacement with or without enzyme addition on broiler performance and intestinal morphology vol.55, pp.5, 2014,
  2. Proteome changes in the small intestinal mucosa of growing pigs with dietary supplementation of non-starch polysaccharide enzymes vol.15, pp.1, 2016,
  3. Unraveling the Nexus: Exploring the Pathways to Combined Resource Use pp.10881980, 2018,