Effect of Genistein on Antioxidative Defence System and Membrane Fluidity in Chick Skeletal Muscle Cells

  • Jiang, Z.Y. (Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science Guangdong Academy of Agricultural Sciences) ;
  • Jiang, S.Q. (Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science Guangdong Academy of Agricultural Sciences) ;
  • Lin, Y.C. (Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science Guangdong Academy of Agricultural Sciences) ;
  • Ma, X.Y. (Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science Guangdong Academy of Agricultural Sciences) ;
  • Xi, P.B. (Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science Guangdong Academy of Agricultural Sciences) ;
  • Cao, T. (Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science Guangdong Academy of Agricultural Sciences) ;
  • Wang, X.Q. (Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science Guangdong Academy of Agricultural Sciences)
  • Received : 2007.11.22
  • Accepted : 2008.03.01
  • Published : 2008.08.01


This study was conducted to investigate the protective effect of genistein on the antioxidative defence system and membrane fluidity in chick skeletal muscle cells after supplementation with 0, 20, 40, and $80{\mu}mol/L$ genistein in $50{\mu}mol/L$ $FeSO_4/H_2O_2$ treated cells for 24 h. Genistein supplementation recovered the decreased activity of total superoxide dismutase induced by $FeSO_4/H_2O_2$, significantly increased glutathione peroxidase activity (p<0.05) and decreased malondialdehyde production (p<0.05). The treatment of 80 mol/L genistein in $FeSO_4/H_2O_2$ treated cells decreased the secretion of creatine kinase (p<0.05). Fluorescence polarization values and microviscosities observed with $FeSO_4/H_2O_2$ treated cells were significantly higher than those observed with no $FeSO_4/H_2O_2$ treated cells. The addition of $80{\mu}mol/L$ genistein improved the increased fluorescence polarization value (p<0.05) caused by $FeSO_4/H_2O_2$ treatment. The microviscosity value was significantly decreased by adding genistein (p<0.05). In conclusion, genistein protected skeletal muscle cells from oxidative damage by improving antioxidative status and membrane fluidity.


Supported by : Guangdong Natural Science Foundation


  1. Arora, A., T. M. Byrem, M. G. Nair and G. M. Strasburg. 2000. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 373:102-109.
  2. Bessman, S. P. and C. L. Carpenter. 1985. The creatine kinase phosphate energy shuttle. Ann. Rev. Biochem. 54:831-862.
  3. Chen, L. J., X. Q. Yang, H. L. Jiao and B. L. Zhao. 2002. Tea catechins protect against lead-induced cytotoxicity lipid peroxidation, and membrane fluidity in HepG2 cells. Toxicol. Sci. 69:149-156.
  4. Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121-126.
  5. Anthony, M. S., T. B. Clarkson and J. K. Williams. 1998. Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am. J. Clin. Nutr. 68:1390S-1393S.
  6. Arora, A., M. G. Nair and G. M. Strasburg. 1998. Antioxidation activities of isoflavones and their biological metabolites in a liposomal system. Arch. Biochem. Biophys. 356:133-141.
  7. Fran, K., E. Donald and G. James. 2000. Research trends in healthful foods. Food Technol. 54:45-52.
  8. Frenkel, K. 1992. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol. Ther. 53:127-166.
  9. Fuchs, P., A. Parola, P. W. Robbins and R. Bloute. 1975. Fluorescence polarization and viscosities of membrane lipids of 3T3 cells. Proc. Nat. Acad. Sci. 72:3351-3354.
  10. Guo, Q., G. Rimbach, H. Moini, S. Weber and L. Packer. 2002. ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids. Toxic. 179:171-180.
  11. Faustman, C. and R. G. Cassens. 1989. Strategies for improving fresh meat colour. In: Proceedings of the 35th International Congr. Meat Science and Technology, Copenhagen, Denmark. pp. 446-453.
  12. Foti, P., D. Erba, P. Riso, A. Spadafranca, F. Criscuoli and G. Testolin. 2005. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch. Biochem. Biophys. 433:421-427.
  13. Devi, G. S., M. H. Prasad, I. Saraswathi, D. Raghu, D. N. Rao and P. P. Reddy. 2000. Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias. Clin. Chemica Acta 293:53-62.
  14. Choi, C., H. Cho, J. Park, C. Cho and Y. Song. 2003. Suppressive effect of genistein on oxidative stress and NFkB activation in RZW 264.7 marcrophages. Biosci. Biotechnol. Biochem. 67:1916-1922.
  15. Liggins, J., S. Runswick and S. A. Bingham. 2002. Daidzein and genistein content of cereals. Eur. J. Clin. Nutr. 56:961-966.
  16. Lopez-Bote, C. J., J. I. Gray, E. A. Gomaa and C. J. Flegal. 1998. Effect of dietary administration of oil extracts from rosemary and sage on lipid oxidation in broiler meat. Br. Poult. Sci. 39:235-240.
  17. Jiang, S. Q., Z. Y. Jiang, Y. C. Lin, P. B. Xi and X. Y. Ma. 2007. Effects of soy isoflavone on performance, meat quality and antioxidative property of male broilers fed oxidized fish oil. Asian-Aust. J. Anim. Sci. 20:1252-1257.
  18. Kapiotis, S., M. Hermann, I. Held, C. Seelos, H. Ehringer and B. M. K. Gmeiner. 1997. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arter. Thromb. Vasc. Biol. 17:2868-2874.
  19. Kerry, N. and M. Abbey. 1998. The isoflavone genistein inhibits copper and peroxyl radical mediated low density lipoprotein oxidation in vitro. Atherosclerosis, 140:341-347.
  20. Khan, N. and S. Sultana. 2004. Induction of renal oxidative stress and cell proliferation response by ferric nitrilotriacetate (Fe-NTA): diminution by soy isoflavones. Chemico-Biological Interactions, 149:23-35.
  21. Hodgson, E., J. R. Bend and R. M. Philpot. 1979. Reviews in biochemical toxicology, Elsevier, Amsterdam, The Netherlands, pp. 109-124.
  22. Ho, K. P., L. Li, L. Zhao and Z. M. Qian. 2003. Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol. Cell Biochem. 247:219-222.
  23. Jha, H. C., G. Von Recklinghausen and F. Zilliken. 1985. Inhibition of in vitro microsomal lipid peroxidation by isoflavonoids. Biochem. Pharmacol. 34:1367-1369.
  24. Sun, Y. P., I. A. Cotgreave, B. Lindeke and P. Moldeus. 1990. The protective effect of sulfite on menadione- and diquat-induced cytotoxicity in isolated rat hepatocytes. Pharmacol. Toxicol, 66:393-398.
  25. Tang, S. Z., J. P. Kerry, D. Sheeham, D. J. Buckley and P. A. Morrissey. 2001. Antioxidative effect of dietary tea catechins on lipid oxidation of long-term frozen stored chicken meat. Meat Sci. 57:331-336.
  26. Tikkanen, M. J., K. Wahala, S. Ojala, V. Vihma and H. Adlercreutz. 1998. Effects of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc. Natl. Acad. Sci. USA 95:3016-3110.
  27. Ursini, F., M. Maiorino, R. Brigelius-Flohe, K. D. Aumann, A. Roveri, D. Schomburg and L. Flohe. 1995. Diversity of glutathione peroxidases. Methods Enzymol. 252:38-114.
  28. Wei, H., L. Wei, K. Frenkel, R. Bowen and S. Barnes. 1993. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr. Cancer. 20:1-12.
  29. Persky, A. M., P. S. Green, L. Stubly, C. O. Howell, L. Zaulyanov, G. A. Brazeau and J. W. Simpkins. 2000. Protective effect of estrogens against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc. Soc. Exp. Biol. Med. 223:59-66.
  30. Record, I. R., I. E. Dreosti and J. K. McInerey. 1995. The antioxidant activity of genistein in vitro. J. Nutr. Biochem. 6:481-485.
  31. Sergent, O., M. Pereira, C. Belhomme, M. Chevanne, L. Huc and D. Lagadic-Gossmann. 2005. Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes. J. Pharmacol. Exper. Ther. 313:104-111.
  32. Matsuda, R., D. H. Spector and R. C. Strohman. 1983. Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms. Dev. Biol. 100:478-488.
  33. Mi, Y. L., C. Q. Zhang, W. D. Zeng, J. X. Liu and H. Y. Liu. 2007. The isoflavonoid daidzein attenuates the oxidative damage induced by polychlorinated biphenyls on cultured chicken testicular cells. Poult. Sci. 86:2008-2012.
  34. Monahan, F. J., J. I. Gray, A. Asghar, A. Haug, G. M. Strasburg, D. J. Buckley and P. A. Morrissey. 1994. Influence of diet on lipid oxidation and membrane structure in porcine muscle microsomes. J. Agric. Food Chem. 42:59-63.
  35. Wilson, T., H. March, W. J. Ban, Y. Hou, S. Adler and C. Y. Mayers. 2002. Antioxidant effects of phyto-and syntheticestrogens on cupric ioninduced oxidation of human lowdensity lipoproteins in vitro. Life Sci. 70:2287-2297.
  36. Yuan, S., D. Chen, K. Zhang and B. Yu. 2007. Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. Asian-Aust. J. Anim. Sci. 20:1600-1605.
  37. Liu, J. B., Sam K. C. Chang and D. Wiesenborn. 2005. Antioxidant properties of soybean isoflavone extract and tofu in vitro and in vivo. J. Agric. Food Chem. 53:2333-2340.

Cited by

  1. Effects of alpha-lipoic acid supplementation on antioxidative ability and performance of sows and nursing piglets vol.96, pp.6, 2011,
  2. Effects of Low Doses of Quercetin and Genistein on Oxidation and Carbonylation in Hemoglobin and Myoglobin vol.11, pp.3, 2014,
  3. Alterations of hepatocyte function with free radical generators and reparation or prevention with coffee polyphenols vol.51, pp.3, 2017,