다양한 구조 유도제로써 합성된 SAPO-34의 결정크기가 메탄올로부터 올레핀 전환반응(MTO)에 미치는 영향

The Effect of Crystal Size of SAPO-34 Synthesized Using Various Structure Directing Agents for MTO Reaction

  • 송영하 (한국화학연구원 석유대체연구센터) ;
  • 채호정 (한국화학연구원 석유대체연구센터) ;
  • 정광은 (한국화학연구원 석유대체연구센터) ;
  • 김철웅 (한국화학연구원 석유대체연구센터) ;
  • 신채호 (충북대학교 화학공학과) ;
  • 정순용 (한국화학연구원 석유대체연구센터)
  • Song, Young-Ha (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology) ;
  • Chae, Ho-Jeong (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology) ;
  • Jeong, Kwang-Eun (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Chul-Ung (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Soon-Yong (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology)
  • 투고 : 2008.08.21
  • 심사 : 2008.09.01
  • 발행 : 2008.10.10

초록

SAPO-34 촉매는 메탄올에서 올레핀 전환반응에서 세공크기가 작아 코크침적에 대한 비활성화가 촉진됨에 따라 촉매의 수명증진이 요구된다. 본 연구에서는 촉매의 수명증진을 위해 다양한 구조 유도제로 합성된 SAPO-34 촉매의 특성을 비교하기 위하여 질소 흡착-탈착 등온선, X-선 회절 분석(XRD), 주사 전자현미경(SEM), 암모니아 승온탈착(NH3-TPD) 등을 이용하여 분석하였으며, 또한 MTO 전환반응 실험을 수행하였다. 합성시 구조 유도제에 따른 결정크기의 감소와 산특성의 변화와, 결정크기가 MTO 전환반응에 미치는 영향을 관찰할 수 있었다. 특히 DEA와 TEAOH 구조 유도제를 혼합 사용한 SAPO-34 촉매는 $0.5{\mu}m$ 정도의 균일한 결정크기를 갖으며, 산특성의 최적화로 가장 우수한 MTO 반응성을 보였으며 촉매의 수명이 향상됨을 알 수 있었다.

키워드

MTO;SAPO-34;structure directing agents;tetraethylammonium hydroxide;diethylamine

과제정보

연구 과제번호 : 메탄올 및 DME로부터 경질올레핀 제조 기술 개발

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. P. Liu, J. Ren, and Y. Sun, Catal. Commum., 9, 1804 (2008) https://doi.org/10.1016/j.catcom.2008.01.030
  2. B. Parlitz, E. Schrerier, H. L. Zubowa, R. Eckelt, E. Lieschke, and R. Fricke, J. Catal., 155, 1 (1995) https://doi.org/10.1006/jcat.1995.1182
  3. J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He, and R. Zhai, Microp. Mesop. Mater., 53, 97 (2002) https://doi.org/10.1016/S1387-1811(02)00329-3
  4. X. Wu and R. G. Anthony, Appl. Catal. A.: Gen., 218, 241 (2001) https://doi.org/10.1016/S0926-860X(01)00651-2
  5. M. J. Kim, J. K. Jeon, Y. K. Park, Y. S. Ko, and J. M. Sohn, Korean Chem. Eng. Res., 45, 117 (2007)
  6. J. H. Kim and M. Niwa, J. Res. Inst. Catal., 18, 45 (2003)
  7. H. J. Chon and G. Seo, Int. Catal., 4th ed., Hanrimwon Publishing Co., Seoul (2002)
  8. S. C. Baek, Y. J. Lee, and K. W. Jun, Korean Chem. Eng. Res., 44, 345 (2006)
  9. G. Seo and B. G. Min, Korean Chem. Eng. Res., 44, 329 (2006)
  10. X. Wu, M. G. Abraha, and R. G. Anthony, Appl. Catal. A.: Gen., 260, 63 (2004) https://doi.org/10.1016/j.apcata.2003.10.011
  11. B. D. Han, C. H. Shin, P. A. Cox, and S. B. Hong, J. Phys. Chem. B., 110, 8188 (2006) https://doi.org/10.1021/jp0604138
  12. D. Chen, K. Moljord, T. Fuglerud, and A. Holmen, Microp. Mesop. Mater., 29, 191 (1999) https://doi.org/10.1016/S1387-1811(98)00331-X
  13. J. J. Pluth and J. V. Smith, J. Phys. Chem., 93, 6516 (1989) https://doi.org/10.1021/j100354a046
  14. G. Liu, P. Tian, Y. Zhang, J. Li, Lei, and Xu, S. Meng, Z. Liu, Microp. Mesop. Mater., 114, 416 (2008) https://doi.org/10.1016/j.micromeso.2008.01.030
  15. M. Stocker, Microp. Mesop. Mater., 29, 3 (1999) https://doi.org/10.1016/S1387-1811(98)00319-9
  16. Y. J. Lee, S. C. Baek, and K. W. Jun, Appl. Catal. A. Gen., 329, 130 (2007) https://doi.org/10.1016/j.apcata.2007.06.034