Accumulation of Flavonols in Response to Ultraviolet-B Irradiation in Soybean Is Related to Induction of Flavanone 3-β-Hydroxylase and Flavonol Synthase

  • Kim, Bong Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Jeong Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Jiyoung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Choonghwan (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2007.08.10
  • Accepted : 2007.10.09
  • Published : 2008.04.30


There are several branch points in the flavonoid synthesis pathway starting from chalcone. Among them, the hydroxylation of flavanone is a key step leading to flavonol and anthocyanin. The flavanone 3-${\beta}$-hydroxylase (GmF3H) gene was cloned from soybean (Glycine max cultivar Sinpaldal) and shown to convert eriodictyol and naringenin into taxifolin and dihydrokaempferol, respectively. The major flavonoids in this soybean cultivar were found by LC-MS/MS to be kamepferol O-triglycosides and O-diglycosides. Expression of GmF3H and flavonol synthase (GmFLS) was induced by ultraviolet-B (UV-B) irradiation and their expression stimulated accumulation of kaempferol glycones. Thus, GmF3H and GmFLS appear to be key enzymes in the biosynthesis of the UV-protectant, kaempferol.


Flavanone 3-${\beta}$-Hydroxylase;Flavonoid;Flavonol Synthase;Glycine max


Supported by : Rural Development Administration


  1. Lozovaya, V.V., Anatoliy, V., Lygin, A.V., Zernova, O.V., Ulanov, A.V., Li, S., Hartman, G.L., and Widholm, J. (2007). Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta 225, 665-679
  2. Wiseman, E., Hartmann, U., Sagasser, M., Baumann, E., Palme, K., Hahlbrock, K., Saedler, H., and Weisshaar, B. (1998). Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotype. Proc. Natl. Acad. Sci. USA 95, 12432-12437
  3. Yanez, J.A., Miranda, N.D., Remsberg, C.M., Ohgami, Y., and Davies, N.M. (2007). Stereospecific high-performance liquid chromatographic analysis of eriodictyol in urine. J. Pharm. Biomed. Anal. 43, 255-262
  4. Forkmann, G., and Martens, S. (2001). Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol. 12, 155-160
  5. Stafford, H.A. (1990). Flavonoid Metabolism (Florida: CRC Press)
  6. Tahara, S. (2007). A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci. Biotechnol. Biochem. 71, 1387-1404
  7. Liu, C.-J., Blount, J.W., Steele, C.L., and Dixon, R.A. (2002). Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 14578-14583
  8. Havsteen, B.H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67-202
  9. Fasoula, D.A., Stephens, P.A., Nickell, C.D., and Vodkin, L.O. (1995). Cosegregation of purple-throat flower color with DNA polymorphism in soybean. Crop Sci. 35, 1028-1031
  10. Dixon, R.A., and Steele, C.L. (1999). Flavonoids and isoflavonoids- a gold mine for metabolic engineering. Trends. Plant Sci. 4, 394-400
  11. Forkmann, G. (1991). Flavonoids as flower pigments: the formation of the natural spectrum and its extension by genetic engineering. Plant Breed. 106, 1-26
  12. Forkmann, G., and Heller, W. (1999). Biosynthesis of flavonoids. In Comprehensive Natural Products Chemistry, (Amsterdam, Nederland; Elsevier), pp. 713-748
  13. Kim, B.G., Lee, Y., Hur, H.-G., Lim, Y., and Ahn, J.-H. (2006). Flavonoid 3'-O-Methyltransferase from rice: cDNA cloning, characterization and functional expression, phytochemistry 67, 387-394
  14. Boue, S.M., Carter-Wienthes, C.H., Shih, B.Y., and Cleveland, T.E. (2003). Identification of flavone aglycones and glycosides in soybean pods by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 991, 61-68
  15. Miyahisa, I., Kaneko, M., Funa, N., Kawasaki, H., Kojima, H., Ohnishi, Y., and Horinouchi, S. (2005). Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 68, 498-504
  16. Kim, H.K., Jang, Y.H., Baek, I.S., Lee, J.H., Park, M.J., Chung, Y.S., Chung, J.I., and Kim, J.K. (2005). Polymorphism and expression of isoflavone synthase genes from soybean cultivars. Mol. Cells 19, 67-73
  17. Zabala, G., and Vodkin, L.O. (2005). The wp mutation of Glycine max carries a gene-fragment-rich transoson of the CACTA superfamily. Plant Cell 17, 2619-2632
  18. Toda, K., Yang, D., Yamanaka, N., Watanabe, S., Harada, K., and Takahashi, R. (2002). A single-base deletion in soybean flavonoid 3'-hydroxylase gene is associated with gray pubescence color. Plant Mol. Biol. 50, 187-196
  19. Britsch, L., and Grisebach, H. (1986). Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. Eur. J. Biochem. 156, 569-577
  20. Shim, H.Y., Park, J.H., Paik, H.D., Nah, S.Y., Kim, D.S., and Han, Y.S. (2007). Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade, mitochondria- mediated death signaling and SAPK/JNK1/2-c-Jun activation. Mol. Cells 24, 95-104
  21. Yu, O., Jung, W., Shi, J., Croes, R.A., Fader, G.M., McGonigle, B., and Odell, J.T. (2000). Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol. 124, 781-793
  22. Sullivan, J.H., and Teramura, A.H. (1990). Field study of the interaction between solar ultraviolet-B irradiation and drought on photosynthesis and growth in soybean. Plant Physiol. 92, 141-146
  23. Takahashi, R., Githiri, S.M., Hatayama, K., Dubouzet, E.G., Shimada, N., Aoki, T., Ayabe, S.-I., Iwashina, T., Toda, K., and Matsumura, H. (2007). A single-base deletion in soybean flavonol synthase gene is associated with magenta flower color. Plant Mol. Biol. 23, 125-135
  24. Winkel-Shirley, B.W. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485-493
  25. Yu, O., Shi, J., Hession, A.O., Maxwell, C.A., McGonigle, B., and Odell, J.T. (2003). Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63, 753-763
  26. Graham, T.L. (1991). Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95, 594-603
  27. Reed, H.E., Teramura, A.H., and Kenworthy, W.J. (1992). Ancestral U.S. soybean cultivars characterized for tolerance to ultraviolet-B radiation. Crop Sci. 32, 1214-1219
  28. Kim, B.G., Ko, J.H., Hur, H.-G., and Ahn, J.-H. (2004). Classification and expression analysis of cytochrome P450 genes from soybean. Agric. Chem. Biotechnol. 47, 173-177
  29. Shirley, B.W. (1996). Flavonoid biosynthesis: new functions for an old pathway. Trends Plant Sci. 1, 377-382