Bone Marrow-derived Side Population Cells are Capable of Functional Cardiomyogenic Differentiation

  • Yoon, Jihyun (Department of Cardiology, College of Medicine, Korea University) ;
  • Choi, Seung-Cheol (Department of Cardiology, College of Medicine, Korea University) ;
  • Park, Chi-Yeon (Department of Cardiology, College of Medicine, Korea University) ;
  • Choi, Ji-Hyun (Department of Cardiology, College of Medicine, Korea University) ;
  • Kim, Yang-In (Department of Physiology and Neuroscience Research Institute, College of Medicine, Korea University) ;
  • Shim, Wan-Joo (Department of Cardiology, College of Medicine, Korea University) ;
  • Lim, Do-Sun (Department of Cardiology, College of Medicine, Korea University)
  • Received : 2007.07.13
  • Accepted : 2007.12.13
  • Published : 2008.04.30


It has been reported that bone marrow (BM)-side population (SP) cells, with hematopoietic stem cell activity, can transdifferentiate into cardiomyocytes and contribute to myocardial repair. However, this has been questioned by recent studies showing that hematopoietic stem cells (HSCs) adopt a hematopoietic cell lineage in the ischemic myocardium. The present study was designed to investigate whether BM-SP cells can in fact transdifferentiate into functional cardiomyocytes. Phenotypically, BM-SP cells were $19.59%{\pm}9.00\;CD14^+$, $8.22%{\pm}2.72\;CD34^+$, $92.93%{\pm}2.68\;CD44^+$, $91.86%{\pm}4.07\;CD45^+$, $28.48%{\pm}2.24\;c-kit^+$, $71.09%{\pm}3.67\;Sca-1^+$. Expression of endothelial cell markers (CD31, Flk-1, Tie-2 and VEGF-A) was higher in BM-SP cells than whole BM cells. After five days of co-culture with neonatal cardiomyocytes, $7.2%{\pm}1.2$ of the BM-SP cells expressed sarcomeric ${\alpha}$-actinin as measured by flow cytometry. Moreover, BM-SP cells co-cultured on neonatal cardiomyocytes fixed to inhibit cell fusion also expressed sarcomeric ${\alpha}$-actinin. The co-cultured BM-SP cells showed neonatal cardiomyocyte-like action potentials of relatively long duration and shallow resting membrane potential. They also generated calcium transients with amplitude and duration similar to those of neonatal cardiomyocytes. These results show that BM-SP cells are capable of functional cardiomyogenic differentiation when co-cultured with neonatal cardiomyocytes.


Bone Marrow;Cardiomyogenic Differentiation;Side Population Cells


Supported by : Ministry of Science and Technology


  1. Asakura, A., and Rudnicki, M.A. (2002). Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol. 30, 1339-1345
  2. Balsam, L.B., Wagers, A.J., Christensen, J.L., Kofidis, T., Weissman, I.L., and Robbins, R.C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668-673
  3. Naylor, C.S., Jaworska, E., Branson, K., Embleton, M.J., and Chopra, R. (2005). Side population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: implications for the use of adult stem cells in transplantation and plasticity protocols. Bone Marrow Transplant. 35, 353-360
  4. Ojima, K., Uezumi, A., Miyoshi, H., Masuda, S., Morita, Y., Fukase, A., Hattori, A., Nakauchi, H., Miyagoe-Suzuki, Y., and Takeda, S. (2004). Mac-1(low) early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration. Biochem. Biophys. Res. Commun. 321, 1050-1061
  5. Sanchez-Ramos, J.R. (2002). Neural cells derived from adult bone marrow and umbilical cord blood. J. Neurosci. Res. 69, 880-893
  6. Wojakowski, W., Tendera, M., Michalowska, A., Majka, M., Kucia, M., Maslankiewicz, K., Wyderka, R., Ochala, A., and Ratajczak, M.Z. (2004). Mobilization of CD34/$CXCR4^+$, CD34/$CD117^+$, c-$met^+$ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110, 3213-3220
  7. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797-1806
  8. Iijima, Y., Nagai, T., Mizukami, M., Matsuura, K., Ogura, T., Wada, H., Toko, H., Akazawa, H., Takano, H., Nakaya, H., et al. (2003). Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. FASEB J. 17, 1361-1363
  9. Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., Colucci, W.S., and Liao, R. (2005). $CD31^-$ but Not $CD31^+$ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res. 97, 52-61
  10. Wurmser, A.E., Nakashima, K., Summers, R.G., Toni, N., D'Amour, K.A., Lie, D.C., and Gage, F.H. (2004). Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350-356
  11. Kucia, M., Reca, R., Jala, V.R., Dawn, B., Ratajczak, J., and Ratajczak, M.Z. (2005). Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19, 1118-1127
  12. Petersen, B.E., Bowen, W.C., Patrene, K.D., Mars, W.M., Sullivan, A.K., Murase, N., Boggs, S.S., Greenberger, J.S., and Goff, J.P. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168-1170
  13. Watt, F.M., and Hogan, B.L. (2000). Out of Eden: stem cells and their niches. Science 287, 1427-1430
  14. Lagostena, L., Avitabile, D., De Falco, E., Orlandi, A., Grassi, F., Iachininoto, M.G., Ragone, G., Fucile, S., Pompilio, G., Eusebi, F., et al. (2005). Electrophysiological properties of mouse bone marrow c-$kit^+$ cells co-cultured onto neonatal cardiac myocytes. Cardiovasc. Res. 66, 482-492
  15. Yoon, J., Shim, W.J., Ro, Y.M., and Lim, D.S. (2005). Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes. Ann. Hematol. 84, 715-721
  16. Laugwitz, K.L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L.Z., Cai, C.L., Lu, M.M., Reth, M., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647-653
  17. Kajstura, J., Rota, M., Whang, B., Cascapera, S., Hosoda, T., Bearzi, C., Nurzynska, D., Kasahara, H., Zias, E., Bonafe, M., et al. (2005). Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. 96, 127-137
  18. Jackson, K.A., Majka, S.M., Wang, H., Pocius, J., Hartley, C.J., Majesky, M.W., Entman, M.L., Michael, L.H., Hirschi, K.K., and Goodell, M.A. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395-1402
  19. Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., Ratajczak, J., Rezzoug, F., Ildstad, S.T., Bolli, R., et al. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ. Res. 95, 1191-1199
  20. Montanaro, F., Liadaki, K., Schienda, J., Flint, A., Gussoni, E., and Kunkel, L.M. (2004). Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Exp. Cell Res. 298, 144-154
  21. Murry, C.E., Soonpaa, M.H., Reinecke, H., Nakajima, H., Nakajima, H.O., Rubart, M., Pasumarthi, K.B., Virag, J.I., Bartelmez, S.H., Poppa, V., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664-668
  22. Parmar, K., Sauk-Schubert, C., Burdick, D., Handley, M., and Mauch, P. (2003). Sca+CD34- murine side population cells are highly enriched for primitive stem cells. Exp. Hematol. 31, 244-250
  23. Storms, R.W., Goodell, M.A., Fisher, A., Mulligan, R.C., and Smith, C. (2000). Hoechst dye efflux reveals a novel CD7(+)CD34(-) lymphoid progenitor in human umbilical cord blood. Blood 96, 2125-2133
  24. Labarge, M.A., and Blau, H.M. (2002). Biological progression from adult bone marrow to mononucleate stem cells to multinucleate muscle fiber in response to injury. Cell 111, 589-601
  25. Lee, V.M., and Stoffel, M. (2003). Bone marrow: an extrapancreatic hideout for the elusive pancreatic stem cells? J. Clin. Invest. 111, 799-801
  26. Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D.M., Nakano, Y., Meyer, E.M., Morel, L., Petersen, B.E., and Scott, E.W. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542-545
  27. Goodell, M.A., Rosenzweig, M., Kim, H., Marks, D.F., De- Maria, M., Paradis, G., Grupp, S.A., Sieff, C.A., Mulligan, R.C., and Johnson, R.P. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3, 1337-1345
  28. Sales-Pardo, I., Avendano, A., Martinez-Munoz, V., Garcia-Escarp, M., Celis, R., Whittle, P., Barquinero, J., Domingo, J.C., Marin, P., and Petriz, J. (2006). Flow cytometry of the side population: tips & tricks. Cell Oncol. 28, 37-53
  29. Yao, A., Su, Z., Nonaka, A., Zubair, I., Spitzer, K.W., Bridge, J.H., Muelheims, G., Ross, J.Jr., and Barry, W.H. (1998). Abnormal myocyte $Ca^2+$ homeostasis in rabbits with pacing induced heart failure. Am. J. Physiol. 275, H1441-H1448
  30. Fraser, A.R., Cook, G., Franklin, I.M., Templeton, J.G., Campbell, M., Holyoake, T.L., and Campbell, J.D. (2006). Immature monocytes from G-CSF-mobilized peripheral blood stem cell collections carry surface-bound IL-10 and have the potential to modulate alloreactivity. J. Leukoc. Biol. 80, 862-869
  31. Nygren, J.M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., Taneera, J., Fleischmann, B.K., and Jacobsen, S.E. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494-501