DOI QR코드

DOI QR Code

Tissue Distribution, SNP Detection and Association Study with Immune Traits of Porcine LBP and CD14 Genes

  • Liu, H.Z. (Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of China Huazhong Agricultural University) ;
  • Li, X.Y. (Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of China Huazhong Agricultural University) ;
  • Liu, B. (Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of China Huazhong Agricultural University) ;
  • Yu, M. (Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of China Huazhong Agricultural University) ;
  • Ma, Y.H. (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Chu, M.X. (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Li, K. (Institute of Animal Science, Chinese Academy of Agricultural Sciences)
  • Received : 2007.11.23
  • Accepted : 2008.02.29
  • Published : 2008.08.01

Abstract

Lipopolysaccharide binding protein (LBP) and CD14 protein play important roles in the defense against infection of Gram-negative bacteria. In the present study, tissue distribution and polymorphism of porcine LBP and CD14 genes were analyzed. Real-time PCR results showed that the porcine LBP gene was especially highly expressed in liver, while CD14 gene was highly expressed in liver and spleen tissues. A 1,732 bp cDNA fragment of porcine LBP gene and a 1,682 bp genomic DNA fragment of CD14 gene were isolated. Polymorphisms were identified in these two fragments and showed that there were 14 potential SNPs in the porcine LBP gene and 3 potential SNPs in the porcine CD14 gene. Three SNPs, 292G/A (Gly/Ser), 1168G/A (Ala/Thr) of the LBP gene and -61G/A of the CD14 gene, were genotyped using restriction fragment length polymorphism (RFLP) method. Association analyses indicated that polymorphism of the 292G/A locus was significantly associated with porcine immune traits hematocrit (HCT), IgG and delayed-type hypersensitivity (DTH) (p<0.01), and the 1168G/A locus was significantly associated with HCT and mean corpuscular volume (MCV) traits (p<0.05). No significant association was found between the -61G/A locus and immune traits of the pig. Our data indicated that the LBP gene was significantly associated with immune traits of pig. Also, we identified some SNPs which may be useful markers for disease-resistant breeding of pigs.

Keywords

Pig;LBP;CD14;TLR4;SNP;Immune Trait

References

  1. Buckova, D., L. I. Holla, V. Znojil and A. Vasku. 2006. Polymorphisms of the CD14 gene and atopic phenotypes in Czech patients with IgE-mediated allergy. J. Hum. Genet. 51:977-983. https://doi.org/10.1007/s10038-006-0050-0
  2. Darlington, G. J., D. R.Wilson, M. Revel and J. H. Kelly. 1989. Response of liver genes to acute phase mediators. Ann. N. Y. Acad. Sci. 557:310-315.
  3. Frey, E. A., D. S. Miller, T. G. Jahr, A. Sundan, V. Bazil, T. Espevik, B. B. Finlay and S. D.Wright. 1992. Soluble CD14 participates in the response of cells to lipopolysaccharide. J. Exp. Med. 176:1665-1671. https://doi.org/10.1084/jem.176.6.1665
  4. Goyert, S. M., E. Ferrero, W. J. Rettig, A. K. Yenamandra, F. Obata and M. M. Le Beau. 1988. The CD14 monocyte differentiation antigen maps to a region encoding growth factors and receptors. Sci. 239:497-500. https://doi.org/10.1126/science.2448876
  5. Barber, R. C., L. Y. Chang, B. D. Arnoldo, G. F. Purdue, J. L. Hunt, J. W. Horton and C. C. Aragaki. 2006. Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin. Med. Res. 4:250-255. https://doi.org/10.3121/cmr.4.4.250
  6. Beutler, B. 2000. Tlr4: central component of the sole mammalian LPS sensor. Curr. Opin. Immunol. 12:20-26. https://doi.org/10.1016/S0952-7915(99)00046-1
  7. Janzen, R., J. C. Jamieson and E. Gospodarek. 1987. Studies on the effect of inflammation on the acute phase response using rat liver slices. Biochem. Med. Metab. Biol. 37:87-95. https://doi.org/10.1016/0885-4505(87)90013-2
  8. Kawai, T., O. Takeuchi, T. Fujita, J. Inoue, P. F. Muhlradt, S. Sato, K. Hoshino and S. Akira. 2001. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167:5887-5894. https://doi.org/10.4049/jimmunol.167.10.5887
  9. Keskin, O., E. Birben, C. Sackesen, O. U. Soyer, E. Alyamac, C. Karaaslan, N. Tokol, H. Ercan and O. Kalayci. 2006. The effect of CD14-c159T genotypes on the cytokine response to endotoxin by peripheral blood mononuclear cells from asthmatic children. Ann. Allergy. Asthma. Immunol. 97:321-328. https://doi.org/10.1016/S1081-1206(10)60796-X
  10. Hughes, A. L. and M. Yeager. 1998. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev. Genet. 32:415-435. https://doi.org/10.1146/annurev.genet.32.1.415
  11. Jack, R. S., X. Fan, M. Bernheiden, G. Rune, M. Ehlers, A. Weber, G. Kirsch, R. Mentel, B. Furll, M. Freudenberg, G. Schmitz, F. Stelter and C. Schutt. 1997. Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature 389:742-745. https://doi.org/10.1038/39622
  12. Hong, S. J., H. B. Kim, M. J. Kang, S. Y. Lee, J. H. Kim, B. S. Kim, S. O. Jang, H. D. Shin and C. S. Park. 2007. TNF-alpha (-308 G/A) and CD14 (-159T/C) polymorphisms in the bronchial responsiveness of Korean children with asthma. J. Allergy. Clin. Immunol. 119:398-404. https://doi.org/10.1016/j.jaci.2006.10.031
  13. Heumann, D. and T. Roger. 2002. Initial responses to endotoxins and Gram-negative bacteria. Clin. Chim. Acta. 323:59-72. https://doi.org/10.1016/S0009-8981(02)00180-8
  14. Hubacek, J. A., F. Stuber, D. Frohlich, M. Book, S. Wetegrove, M. Ritter, G. Rothe and G. Schmitz. 2001. Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit. Care Med. 29:557-561. https://doi.org/10.1097/00003246-200103000-00015
  15. Griffin, J. D., J. Ritz, L. M. Nadler and S. F. Schlossman. 1981. Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J. Clin. Invest. 68:932-941. https://doi.org/10.1172/JCI110348
  16. Haga, H., R. Yamada, Y. Ohnishi, Y. Nakamura and T. Tanaka. 2002. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J. Hum. Genet. 47:605-610. https://doi.org/10.1007/s100380200092
  17. Haidari, M., M. Hajilooi, M. Rezazadeh, A. Rafiei, S. A. Alavi and F. Keramat. 2006. Polymorphism in the promoter region of the CD14 gene and susceptibility to Brucellosis. Immunol. Invest. 35:239-245. https://doi.org/10.1080/08820130600634568
  18. Haziot, A., I. Katz, G. W. Rong, X. Y. Lin, J. Silver and S. M. Goyert. 1997. Evidence that the receptor for soluble CD14: LPS complexes may not be the putative signal-transducing molecule associated with membrane-bound CD14. Scand. J. Immunol. 46:242-245. https://doi.org/10.1046/j.1365-3083.1997.d01-124.x
  19. Mohammad Alizadeh, A. H., M. Ranjbar, M. Hajilooi and F. Fallahian. 2006. Association of promoter polymorphism of the CD14 C (-159) T endotoxin receptor gene with chronic hepatitis B. World J. Gastroenterol. 12:5717-5720. https://doi.org/10.3748/wjg.v12.i35.5717
  20. Oosterwegel, M., M. van de Wetering, J. Timmerman, A. Kruisbeek, O. Destree, F. Meijlink and H. Clevers. 1993. Differential expression of the HMG box factors TCF-1 and LEF-1 during murine embryogenesis. Develop. 118:439-448.
  21. Palladino, M. A., T. A. Johnson, R. Gupta, J. L. Chapman and P. Ojha. 2007. Members of the toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract. Biol. Reprod. 76:958-964. https://doi.org/10.1095/biolreprod.106.059410
  22. Lukovic, Z., M. Uremovic, M. Konjacic, Z. Uremovic and D. Vincek. 2007. Genetic parameters for litter size in pigs using a random regression model. Asian-Aust. J. Anim. Sci. 20(2):160-165.
  23. Medzhitov, R., P. Preston-Hurlburt and C. A. Janeway. Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394-397. https://doi.org/10.1038/41131
  24. Klein, J., Y. Satta, C. O'HUigin and N. Takahata. 1993. The molecular descent of the major histocompatibility complex. Annu. Rev. Immunol. 11:269-295. https://doi.org/10.1146/annurev.iy.11.040193.001413
  25. Liu, S., L. S. Khemlani, R. A. Shapiro, M. L. Johnson, K. Liu, D. A. Geller, S. C. Watkins, S. M. Goyert and T. R. Billiar. 1998. Expression of CD14 by hepatocytes: upregulation by cytokines during endotoxemia. Infect. Immun. 66:5089-5098.
  26. Wan, Y., P. D. Freeswick, L. S. Khemlani, P. H. Kispert, S. C. Wang, G. L. Su and T. R. Billiar. 1995. Role of lipopolysaccharide (LPS), interleukin-1, interleukin-6, tumor necrosis factor, and dexamethasone in regulation of LPSbinding protein expression in normal hepatocytes and hepatocytes from LPS-treated rats. Infect. Immun. 63:2435-2442.
  27. Wang, H., S. L. Yang, Z. L. Tang, Y. L. Mu, W. T. Cui and K. Li. 2007. Expression characterization, polymorphism and chromosomal location of the porcine calsarcin-3 gene. Asian-Aust. J. Anim. Sci. 20(9):1349-1353. https://doi.org/10.5713/ajas.2007.1349
  28. Waterman, M. L. and K. A. Jones. 1990. Purification of TCF-1 alpha, a T-cell-specific transcription factor that activates the Tcell receptor C alpha gene enhancer in a context-dependent manner. New Biol. 2:621-636.
  29. Ulevitch, R. J. and P. S. Tobias. 1999. Recognition of gramnegative bacteria and endotoxin by the innate immune system. Curr. Opin. Immunol. 11:19-22. https://doi.org/10.1016/S0952-7915(99)80004-1
  30. Van Heugten, E., J. W. Spears, M. T. Coffey, E. B. Kegley and M. A. Qureshi. 1994. The effect of methionine and aflatoxin on immune function in weanling pigs. J. Anim. Sci. 72:658-664. https://doi.org/10.2527/1994.723658x
  31. Simmons, D. L., S. Tan, D. G. Tenen, A. Nicholson-Weller and B. Seed. 1989. Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood 73:284-289.
  32. Streetz, K. L., T. Wustefeld, C. Klein, M. P. Manns and C. Trautwein. 2001. Mediators of inflammation and acute phase response in the liver. Cell Mol. Biol. (Noisy-le-grand) 47:661-673.
  33. Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and grampositive bacterial cell wall components. Immunity 11:443-451. https://doi.org/10.1016/S1074-7613(00)80119-3
  34. Palsson-McDermott, E. M. and L. A. O'Neill. 2004. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunol. 113:153-162. https://doi.org/10.1111/j.1365-2567.2004.01976.x
  35. Pugin, J., C. C. Schurer-Maly, D. Leturcq, A. Moriarty, R. J. Ulevitch and P. S. Tobias. 1993. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc. Natl. Acad. Sci. USA 90:2744-2748. https://doi.org/10.1073/pnas.90.7.2744
  36. Rock, F. L., G. Hardiman, J. C. Timans, R. A. Kastelein and J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95:588-593. https://doi.org/10.1073/pnas.95.2.588
  37. Schumann, R. R., S. R. Leong, G. W. Flaggs, P. W. Gray, S. D. Wright, J. C. Mathison, P. S. Tobias and R. J. Ulevitch. 1990. Structure and function of lipopolysaccharide binding protein. Sci. 249:1429-1431. https://doi.org/10.1126/science.2402637
  38. Liu, B., Q. D. Zhang, Z. L. Tang, Y. P. Guo, Y. H. Ma, M. Yu, B. Fan, M. J. Zhu, Z. Z. Peng and K. Li. 2003. A preliminary study on immune traits of Tongcheng pigs and its crossbreds. J. Huazhong Agric. Univ. 22:469-473.