4-{4'-(니트로페닐아조)펜옥시}알칸 산들 그리고 4-{4'-(니트로페닐아조)펜옥시}알카노일 클로라이드들의 열방성 액정 거동

Thermotropic Liquid Crystalline Behaviors of 4-{4'-(nitrophenylazo)phenoxy}alkanoic Acids and 4-{4'-(nitrophenylazo)phenoxy}alkanoyl Chlorides

  • 정승용 (단국대학교 고분자공학과) ;
  • 마영대 (단국대학교 고분자공학과)
  • Jeong, Seung Yong (Department of Polymer Science and Engineering, Dankook University) ;
  • Ma, Yung Dae (Department of Polymer Science and Engineering, Dankook University)
  • 투고 : 2008.06.11
  • 심사 : 2008.08.03
  • 발행 : 2008.10.10

초록

두 종류의 니트로아조벤젠 유도체들, 즉 4-{4'-(니트로페닐아조)펜옥시}알칸 산(NAAn, n = 2~8, 10, 알킬 사슬 중의 메틸렌 기의 수) 그리고 4-{4'-(니트로페닐아조)펜옥시}알카노일 클로라이드(NACn, n = 2~8, 10)을 합성함과 동시에 이들의 열방성 액정의 거동을 검토하였다. NAA6은 쌍방성 네마틱 상을 형성하는 반면 NAA2을 제외한 나머지 유도체들은 단방성 네마틱 상을 형성하였다. NAAn 그리고 NACn이 나타내는 액체 상에서 네마틱 상으로의 전이온도($T_{iN}$) 그리고 $T_{iN}$에서의 엔트로피 변화(${\Delta}S$)는 n의 변화에 따라 현저한 홀수-짝수 효과를 나타냈다. 그러나 NAAn의 $T_{iN}$ 그리고 ${\Delta}S$는 n이 동일한 NACn의 $T_{iN}$ 그리고 ${\Delta}S$ 값에 비해 대단히 높았다. 이러한 사실은 카복실 그룹간에 작용하는 수소결합력에 의해 초래되는 것으로 생각된다. NAAn 그리고 NACn이 나타내는 액정 상의 열적 안정성과 질서도 그리고 홀수-짝수 효과는 4-(알콕시)-4'-니트로아조벤젠들에 대해 보고되어 있는 결과와는 현저히 달랐다. 이러한 특성을 분자의 이방성 그리고 온도에 의존하는 치환기 그룹의 유연성 차이 견지에서 검토하였다.

참고문헌

  1. L. Brehmer, Polymer Sensors and Actuators, eds, Y. Osada and D. De Rossi, 62, Springer-Verlag, Berlin (2002)
  2. S. M. Harwood, K. J. Toyne, J. W. Goodby, M. Parsely, and G. W. Gray, Liq. Cryst., 27, 443 (2000) https://doi.org/10.1080/026782900202624
  3. B. Bahadur, Handbook of Liquid Crystals, eds. D. Denuus, J. Gooolby, G. W. Gray, H-W. Spiess, and V. Vill, 2A, 257, Wiley- VCH, Weinheim-New York (1998)
  4. A. E. Blatch and G. R. Luckhurst, Liq. Cryst., 27, 755 (2000) https://doi.org/10.1080/026782900202237
  5. A. V. Mallia and N. Tamaoki, Chem, Mater., 15, 3237 (2003) https://doi.org/10.1021/cm034127+
  6. K. N. Kim, E.-D. Do, Y.-W. Kwon, and J.-I. Jin, Liq. Cryst., 32, 229 (2005) https://doi.org/10.1080/02678290412331329305
  7. T. Fukuda, Y. Tsujii, and T. Miyamoto, Macromol. Symp., 99, 257 (1995)
  8. A. N Cammidge and R. J. Bushby, Handbook of Liquid of Crystals, eds. D. Demus, J. Goodby, G.-W. Spiess, and V. Vill, 2B, 693, Wiley-VCH, Weinheim-New York (1998)
  9. S.-Y. Jeong and Y.-D. Ma, J. Korean Ind. Eng. Chem., 18, 475 (2007)
  10. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 356 (2007)
  11. N. Laurent, D. Lafont, F. Deumoulin, P. Boullanger, G. Makenzie, P. H. J. Kouwer, and J. W. Goodby, J. Am. Chem. Soc., 125, 15499 (2003) https://doi.org/10.1021/ja037347x
  12. C. Wu, Q. Gu, Y. Huang, and S. Chen, Liq. Cryst., 30, 733 (2003) https://doi.org/10.1080/0267829031000115005
  13. K. Yamaoka, T. Kaneko, J. P. Gong, and Y. Osada, Macromolecules, 34, 1470 (2001) https://doi.org/10.1021/ma001493v
  14. P. A. Henderson and C. T. Imrie, Macromolules, 38, 3307 (2005) https://doi.org/10.1021/ma0502304
  15. S. Kumaresan and P. Kanan, J. Polym. Sci.; Part A: Polym. Chem., 41, 3188 (2003) https://doi.org/10.1002/pola.10910
  16. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 58 (2007)
  17. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 32, 169 (2008)
  18. S.-Y. Jeong and Y.-D. Ma, unpublished results
  19. T. Niori, S. Adachi, and J. Watanabe, Liq. Cryst., 19, 139 (1995) https://doi.org/10.1080/02678299508036731
  20. L. Chen, S.-G. Li, Y.-P. Zhao, Y.-C. Wang, and Q.-W. Wang, J. Appl. Polym. Sci., 96, 2163 (2005) https://doi.org/10.1002/app.21675
  21. E. M. Barrall and J. F. Johnson, Liquid Crystals and Plastic Crystals, eds. G. W. Gray and P. A. Winsor, 2, 254, Ellis Harwood, Chichester, England (1974)
  22. M Studenovsky, Z. Sedlakova, G. Wang, S. Nespurek, K. Janus, O. P. Boiko, and F. Kajzar, Macromol. Symp., 212, 399 (2004)
  23. E. Chiellini and M. Laus, Handbook of Liquid Crystals, eds. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 3, 26, Wiley-VCH, Weinheim-New York (1998)
  24. C. T. Imrie and G. R. Luckhurst, Handbook of Liquid Crystals, eds. D. Demus, H, Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, 2B, 801, Wiley-VCH, Weinheim-New York (1998)
  25. M. Muller and R. Zentel. Macromol. Chem. Phys., 201, 2055 (2000) https://doi.org/10.1002/1521-3935(20001001)201:15<2055::AID-MACP2055>3.0.CO;2-P
  26. J. Franek, Z. J. Jedllinsky, and J. Majunsz, Handbook of Polymer Synthesis, ed. H. R. Kircheldorf, Part B, 1281, Marcel Dekker, Inc., New York (1992)
  27. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 30 338 (2006)
  28. S. Yin, H. Xu, X. Su, G. Li, Y. Song, J. Lam, and B. Tang, J. Polym. Sci.; Part A: Polym. Chem., 44, 2346 (2006) https://doi.org/10.1002/pola.21355
  29. W. Maier, A. Saupe, and Z. Naturforsch, 13a, 564 (1958)
  30. T. Kodaira, M. Endo, and M. Kurachi, Macromol. Chem. Phys., 199, 2329 (1998) https://doi.org/10.1002/(SICI)1521-3935(19981001)199:10<2329::AID-MACP2329>3.0.CO;2-G
  31. M. Li, E. Zhou, J. Xu, and X. Chen, J. Appl. Polym. Sci., 60, 2185 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2185::AID-APP16>3.0.CO;2-6
  32. W. Maier, A. Saupe, and Z. Naturforsch, 15a, 287 (1960)
  33. O. Nuyken, Encyclopedia of Polymer Science and Engineering eds. A. Klingsberg, J. Muldoon, and A. Salvatore, 2, 157, John wiley & Sons, New York (1995)
  34. M. Sato and M. Mizoi, Polym. J., 36, 607 (2004) https://doi.org/10.1295/polymj.36.607
  35. W. Maier, A. Saupe, and Z. Naturforsch, 14a, 882 (1959)
  36. G.-Y Yeap, W.-S. Ooi, Y. Nakamura, and Z. Chen, Mol. Cryst. Liq. Cryst., 381, 169 (2002) https://doi.org/10.1080/713738733
  37. F. Dowell and D. E. Martire, J. Chem. Phys., 68, 1094 (1979) https://doi.org/10.1063/1.435787
  38. S. W. Cha, J.-I. Jin, M. Laguerre, M. F. Achard, and F. Hardouin, Liq. Cryst., 26, 1325 (1999) https://doi.org/10.1080/026782999203995
  39. J.-H. Liu and P.-C. Yang, J. Appl. Polym. Sci., 91, 3693 (2004) https://doi.org/10.1002/app.13614
  40. P. J. Collings and M. Hird, Introduction to Liquid Crystals, eds. G. W. Gray, G. W. Goodby, and A. Fukuda, 43, Taylor and Franics Ltd., London (1997)
  41. J.-I. Jin, Mol. Cryst. Liq. Cryst., 267, 249 (1995) https://doi.org/10.1080/10587259508034002
  42. S. Chandrasekhar, Liquid Crystals, 17, Cambridge University Press, New York (1992)
  43. C. T. Imrie and F. E. Karasz, Macromoleules, 26, 545 (1993) https://doi.org/10.1021/ma00055a021
  44. G. W. Gray, The Molecular Physics and Liquid Crystals, eds G. R. Luckhurst, and G. W. Gray, 1, Academic Press, New York (1979)
  45. V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci., 28, 729 (2003) https://doi.org/10.1016/S0079-6700(02)00086-2
  46. P. A. Henderson, A. G. Cook, and C. T. Imrie, Liq. Cryst., 31, 1427 (2004) https://doi.org/10.1080/02678290412331298067
  47. J. W. Goodby, Liq. Cryst., 25, 25 (1998)
  48. Z. Zheng, J. Xu, Y. Sun, J. Zhou, B. Chen, Q. Zhang, and K. Wang, J. Polym. Sci.; Part A: Polym. Chem., 44, 3210 (2006) https://doi.org/10.1002/pola.21398
  49. J.-W. Lee, Y. Park, J.-I. Jin, M. F. Achard, and F. Hardouin, J. Mater. Chem., 13, 1367 (2003) https://doi.org/10.1039/b211932c
  50. E. Yashima, J. Noguchi, and Y. Okamoto, Macromoleules, 28, 8368 (1995) https://doi.org/10.1021/ma00128a054
  51. S.-Y. Jeong and Y.-D. Ma, Industrial Technology Research Paper (Dan-kook University), 8, 69 (2007)
  52. S. Kurihara, K. Iwamoto, and N. Nonaka, Polymer, 39, 3565 (1998) https://doi.org/10.1016/S0032-3861(97)10268-3
  53. C. T. Imrie, T. Schleek, F. E. Karasz, and G. S. Attard, Macromoleules, 26, 539 (1993) https://doi.org/10.1021/ma00055a020
  54. X, Xie, A. Natansohn, and P. Rochon, Chem. Mater., 5, 403 (1993) https://doi.org/10.1021/cm00028a003
  55. S.-Y. Jeong and Y.-D. Ma, Polymer(Korea), 31, 37 (2007)
  56. M. Sato, M. Mizoi, and Y. Uemoto, Macromol. Chem. Phys., 202, 3634 (2001) https://doi.org/10.1002/1521-3935(20011201)202:18<3634::AID-MACP3634>3.0.CO;2-J
  57. G. W. Gray, Liquid Crystals and Plastic Crystals, eds. G. W. Gray and P. A. Winsor, 1, 103, Ellis Harwood, Chichester, England (1974)