DOI QR코드

DOI QR Code

Multiple roles of phosphoinositide-specific phospholipase C isozymes

  • Suh, Pann-Ghill (Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Park, Jae-Il (Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Manzoli, Lucia (Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna) ;
  • Cocco, Lucio (Cellular Signaling Laboratory, Department of Anatomical Sciences, University of Bologna) ;
  • Peak, Joanna C. (Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research) ;
  • Katan, Matilda (Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research) ;
  • Fukami, Kiyoko (Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science) ;
  • Kataoka, Tohru (Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine) ;
  • Yun, Sang-Uk (Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Ryu, Sung-Ho (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Accepted : 2008.06.03
  • Published : 2008.06.30

Abstract

Phosphoinositide-specific phospholipase C is an effector molecule in the signal transduction process. It generates two second messengers, inositol-1,4,5-trisphosphate and diacylglycerol from phosphatidylinositol 4,5-bisphosphate. Currently, thirteen mammal PLC isozymes have been identified, and they are divided into six groups: PLC-$\beta$, -$\gamma$, -$\delta$, -$\varepsilon$, -$\zeta$ and -$\eta$. Sequence analysis studies demonstrated that each isozyme has more than one alternative splicing variant. PLC isozymes contain the X and Y domains that are responsible for catalytic activity. Several other domains including the PH domain, the C2 domain and EF hand motifs are involved in various biological functions of PLC isozymes as signaling proteins. The distribution of PLC isozymes is tissue and organ specific. Recent studies on isolated cells and knockout mice depleted of PLC isozymes have revealed their distinct phenotypes. Given the specificity in distribution and cellular localization, it is clear that each PLC isozyme bears a unique function in the modulation of physiological responses. In this review, we discuss the structural organization, enzymatic properties and molecular diversity of PLC splicing variants and study functional and physiological roles of each isozyme.

Keywords

Alternative splicing variant;Phosphoinositide-specific phospholipase C;Signal transduction

References

  1. Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Ishii, H., Bansal, V. S. and Wilson, D. B. (1986) The metabolism of phosphoinositide-derived messenger molecules. Science 234, 1519-1526. https://doi.org/10.1126/science.3024320
  2. Singer, W. D., Brown, H. A. and Sternweis, P. C. (1997) Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu. Rev. Biochem. 66, 475-509. https://doi.org/10.1146/annurev.biochem.66.1.475
  3. Rhee, S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281-312. https://doi.org/10.1146/annurev.biochem.70.1.281
  4. Hokin, M. R. and Hokin, L. E. (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol. Chem. 203, 967-977.
  5. Streb, H., Irvine, R. F., Berridge, M. J. and Schulz, I. (1983) Release of $Ca^{2+}$ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67-69. https://doi.org/10.1038/306067a0
  6. Takenawa, T. and Nagai, Y. (1981) Purification of phosphatidylinositol- specific phospholipase C from rat liver. J. Biol. Chem. 256, 6769-6775.
  7. Suh, P. G., Ryu, S. H., Moon, K. H., Suh, H. W. and Rhee, S. G. (1988) Cloning and sequence of multiple forms of phospholipase C. Cell 54, 161-169. https://doi.org/10.1016/0092-8674(88)90548-X
  8. Essen, L. O., Perisic, O., Cheung, R., Katan, M. and Williams, R. L. (1996) Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta. Nature 380, 595-602. https://doi.org/10.1038/380595a0
  9. Ellis, M. V., U, S. and Katan, M. (1995) Mutations within a highly conserved sequence present in the X region of phosphoinositide- specific phospholipase C-delta 1. Biochem. J. 307, 69-75. https://doi.org/10.1042/bj3070069
  10. Williams, R. L. (1999) Mammalian phosphoinositide-specific phospholipase C. Biochim. Biophys. Acta. 1441, 255-267. https://doi.org/10.1016/S1388-1981(99)00150-X
  11. Ellis, M. V., James, S. R., Perisic, O., Downes, C. P., Williams, R. L. and Katan, M. (1998) Catalytic domain of phosphoinositide-specific phospholipase C (PLC). Mutational analysis of residues within the active site and hydrophobic ridge of plcdelta1. J. Biol. Chem. 273, 11650-11659. https://doi.org/10.1074/jbc.273.19.11650
  12. Wang, L. P., Lim, C., Kuan, Y., Chen, C. L., Chen, H. F. and King, K. (1996) Positive charge at position 549 is essential for phosphatidylinositol 4,5-bisphosphate-hydrolyzing but not phosphatidylinositol-hydrolyzing activities of human phospholipase C delta1. J. Biol. Chem. 271, 24505-24516. https://doi.org/10.1074/jbc.271.40.24505
  13. Paterson, H. F., Savopoulos, J. W., Perisic, O., Cheung, R., Ellis, M. V., Williams, R. L. and Katan, M. (1995) Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312, 661-666. https://doi.org/10.1042/bj3120661
  14. Wang, T., Dowal, L., El-Maghrabi, M. R., Rebecchi, M. and Scarlata, S. (2000) The pleckstrin homology domain of phospholipase C-beta(2) links the binding of gbetagamma to activation of the catalytic core. J. Biol. Chem. 275, 7466-7469. https://doi.org/10.1074/jbc.275.11.7466
  15. Falasca, M., Logan, S. K., Lehto, V. P., Baccante, G., Lemmon, M. A. and Schlessinger, J. (1998) Activation of phospholipase C gamma by PI 3-kinase-induced PH domain- mediated membrane targeting. EMBO J. 17, 414-422. https://doi.org/10.1093/emboj/17.2.414
  16. Wen, W., Yan, J. and Zhang, M. (2006) Structural characterization of the split pleckstrin homology domain in phospholipase C-gamma1 and its interaction with TRPC3. J. Biol. Chem. 281, 12060-12068 https://doi.org/10.1074/jbc.M600336200
  17. Nakashima, S., Banno, Y., Watanabe, T., Nakamura, Y., Mizutani, T., Sakai, H., Zhao, Y., Sugimoto, Y. and Nozawa, Y. (1995) Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-delta 1: effects on its activity. Biochem. Biophys. Res. Commun. 211, 365-369.
  18. Otterhag, L., Sommarin, M. and Pical, C. (2001) N-terminal EF-hand-like domain is required for phosphoinositide- specific phospholipase C activity in Arabidopsis thaliana. FEBS Lett. 497, 165-170. https://doi.org/10.1016/S0014-5793(01)02453-X
  19. Homma, Y., Takenawa, T., Emori, Y., Sorimachi, H. and Suzuki, K. (1989) Tissue- and cell type-specific expression of mRNAs for four types of inositol phospholipid-specific phospholipase C. Biochem. Biophys. Res. Commun. 164, 406-412. https://doi.org/10.1016/0006-291X(89)91734-8
  20. Park, D., Jhon, D. Y., Kriz, R., Knopf, J. and Rhee, S. G. (1992) Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. J. Biol. Chem. 267, 16048-16055.
  21. Sun, L., Mao, G., Kunapuli, S. P., Dhanasekaran, D. N. and Rao, A. K. (2007) Alternative splice variants of phospholipase C-beta2 are expressed in platelets: effect on Galphaq-dependent activation and localization. Platelets. 18, 217-223. https://doi.org/10.1080/09537100601016133
  22. Jhon, D. Y., Lee, H. H., Park, D., Lee, C. W., Lee, K. H., Yoo, O. J. and Rhee, S. G. (1993) Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-beta 3. J. Biol. Chem. 268, 6654-6661.
  23. Adamski, F. M., Timms, K. M. and Shieh, B. H. (1999) A unique isoform of phospholipase Cbeta4 highly expressed in the cerebellum and eye. Biochim. Biophys. Acta. 1444, 55-60. https://doi.org/10.1016/S0167-4781(98)00260-7
  24. Min, D. S., Kim, D. M., Lee, Y. H., Seo, J., Suh, P. G. and Ryu, S. H. (1993) Purification of a novel phospholipase C isozyme from bovine cerebellum. J. Biol. Chem. 268, 12207-12212.
  25. Alvarez, R. A., Ghalayini, A. J., Xu, P., Hardcastle, A., Bhattacharya, S., Rao, P. N., Pettenati, M. J., Anderson, R. E. and Baehr, W. (1995) cDNA sequence and gene locus of the human retinal phosphoinositide-specific phospholipase-C beta 4 (PLCB4). Genomics 29, 53-61. https://doi.org/10.1006/geno.1995.1214
  26. Mizuguchi, M., Yamada, M., Kim, S. U. and Rhee, S. G. (1991) Phospholipase C isozymes in neurons and glial cells in culture: an immunocytochemical and immunochemical study. Brain Res. 548, 35-40. https://doi.org/10.1016/0006-8993(91)91103-8
  27. Tanaka, O. and Kondo, H. (1994) Localization of mRNAs for three novel members (beta 3, beta 4 and gamma 2) of phospholipase C family in mature rat brain. Neurosci. Lett. 182, 17-20. https://doi.org/10.1016/0304-3940(94)90194-5
  28. Ji, Q. S., Ermini, S., Baulida, J., Sun, F. L. and Carpenter, G. (1998) Epidermal growth factor signaling and mitogenesis in Plcg1 null mouse embryonic fibroblasts. Mol. Biol. Cell. 9, 749-757. https://doi.org/10.1091/mbc.9.4.749
  29. Wang, D., Feng, J., Wen, R., Marine, J. C., Sangster, M. Y., Parganas, E., Hoffmeyer, A., Jackson, C. W., Cleveland, J. L., Murray, P. J. and Ihle, J. N. (2000) Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity 13, 25-35. https://doi.org/10.1016/S1074-7613(00)00005-4
  30. Hashimoto, A., Takeda, K., Inaba, M., Sekimata, M., Kaisho, T., Ikehara, S., Homma, Y., Akira, S. and Kurosaki, T. (2000) Cutting edge: essential role of phospholipase C-gamma 2 in B cell development and function. J. Immunol. 165, 1738-1742. https://doi.org/10.4049/jimmunol.165.4.1738
  31. Lee, W. K., Kim, J. K., Seo, M. S., Cha, J. H., Lee, K. J., Rha, H. K., Min, D. S., Jo, Y. H. and Lee, K. H. (1999) Molecular cloning and expression analysis of a mouse phospholipase C-delta1. Biochem. Biophys. Res. Commun. 261, 393-399. https://doi.org/10.1006/bbrc.1999.1035
  32. Lin, F. G., Cheng, H. F., Lee, I. F., Kao, H. J., Loh, S. H. and Lee, W. H. (2001) Downregulation of phospholipase C delta3 by cAMP and calcium. Biochem. Biophys. Res. Commun. 286, 274-280. https://doi.org/10.1006/bbrc.2001.5371
  33. Lee, S. B. and Rhee, S. G. (1996) Molecular cloning, splice variants, expression, and purification of phospholipase C-delta 4. J. Biol. Chem. 271, 25-31. https://doi.org/10.1074/jbc.271.1.25
  34. Lopez, I., Mak, E. C., Ding, J., Hamm, H. E. and Lomasney, J. W. (2001) A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogenactivated protein kinase pathway. J. Biol. Chem. 276, 2758-2765. https://doi.org/10.1074/jbc.M008119200
  35. Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K. and Lai, F. A. (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129, 3533-3544.
  36. Hwang, J. I., Oh, Y. S., Shin, K. J., Kim, H., Ryu, S. H. and Suh, P. G. (2005) Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem. J. 389, 181-186. https://doi.org/10.1042/BJ20041677
  37. Zhou, Y., Wing, M. R., Sondek, J. and Harden, T. K. (2005) Molecular cloning and characterization of PLC-eta2. Biochem. J. 391, 667-676. https://doi.org/10.1042/BJ20050839
  38. Nakahara, M., Shimozawa, M., Nakamura, Y., Irino, Y., Morita, M., Kudo, Y. and Fukami, K. (2005) A novel phospholipase C, PLC(eta)2, is a neuron-specific isozyme. J. Biol. Chem. 280, 29128-29134. https://doi.org/10.1074/jbc.M503817200
  39. Bahk, Y. Y., Song, H., Baek, S. H., Park, B. Y., Kim, H., Ryu, S. H. and Suh, P. G. (1998) Localization of two forms of phospholipase C-beta1, a and b, in C6Bu-1 cells. Biochim. Biophys. Acta. 1389, 76-80. https://doi.org/10.1016/S0005-2760(97)00128-8
  40. Mao, G. F., Kunapuli, S. P. and Koneti Rao, A. (2000) Evidence for two alternatively spliced forms of phospholipase C-beta2 in haematopoietic cells. Br. J. Haematol. 110, 402-408. https://doi.org/10.1046/j.1365-2141.2000.02201.x
  41. Kim, M. J., Min, D. S., Ryu, S. H. and Suh, P. G. (1998) A cytosolic, galphaq- and betagamma-insensitive splice variant of phospholipase C-beta4. J. Biol. Chem. 273, 3618-3624. https://doi.org/10.1074/jbc.273.6.3618
  42. Sorli, S. C., Bunney, T. D., Sugden, P. H., Paterson, H. F. and Katan, M. (2005) Signaling properties and expression in normal and tumor tissues of two phospholipase C epsilon splice variants. Oncogene 24, 90-100. https://doi.org/10.1038/sj.onc.1208168
  43. Peruzzi, D., Aluigi, M., Manzoli, L., Billi, A. M., Di Giorgio, F. P., Morleo, M., Martelli, A. M. and Cocco, L. (2002) Molecular characterization of the human PLC beta1 gene. Biochim. Biophys. Acta. 1584, 46-54. https://doi.org/10.1016/S1388-1981(02)00269-X
  44. Min, D. S., Kim, Y., Lee, Y. H., Suh, P. G. and Ryu, S. H. (1993) A G-protein-coupled 130 kDa phospholipase C isozyme, PLC-beta 4, from the particulate fraction of bovine cerebellum. FEBS Lett. 331, 38-42 https://doi.org/10.1016/0014-5793(93)80293-4
  45. Harada, K., Takeuchi, H., Oike, M., Matsuda, M., Kanematsu, T., Yagisawa, H., Nakayama, K. I., Maeda, K., Erneux, C. and Hirata, M. (2005) Role of PRIP-1, a novel Ins(1,4,5)P3 binding protein, in Ins(1,4,5)P3-mediated $Ca^{2+}$ signaling. J. Cell. Physiol. 202, 422-433. https://doi.org/10.1002/jcp.20136
  46. Nagano, K., Fukami, K., Minagawa, T., Watanabe, Y., Ozaki, C. and Takenawa, T. (1999) A novel phospholipase C delta4 (PLCdelta4) splice variant as a negative regulator of PLC. J. Biol. Chem. 274, 2872-2879. https://doi.org/10.1074/jbc.274.5.2872
  47. Kouchi, Z., Fukami, K., Shikano, T., Oda, S., Nakamura, Y., Takenawa, T. and Miyazaki, S. (2004) Recombinant phospholipase Czeta has high $Ca^{2+}$ sensitivity and induces $Ca^{2+}$ oscillations in mouse eggs. J. Biol. Chem. 279, 10408-10412. https://doi.org/10.1074/jbc.M313801200
  48. Rebecchi, M. J. and Pentyala, S. N. (2000) Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291-1335. https://doi.org/10.1152/physrev.2000.80.4.1291
  49. Faenza, I., Bregoli, L., Ramazzotti, G., Gaboardi, G., Follo, M. Y., Mongiorgi, S., Billi, A. M., Manzoli, L., Martelli, A. M. and Cocco, L. (2008) Nuclear phospholipase C beta1 and cellular differentiation. Front. Biosci. 13, 2452-2463. https://doi.org/10.2741/2858
  50. Drin, G. and Scarlata, S. (2007) Stimulation of phospholipase Cbeta by membrane interactions, interdomain movement, and G protein binding-how many ways can you activate an enzyme? Cell. Signal. 19, 1383-1392. https://doi.org/10.1016/j.cellsig.2007.04.006
  51. Ross, E. M., Mateu, D., Gomes, A. V., Arana, C., Tran, T. and Litosch, I. (2006) Structural determinants for phosphatidic acid regulation of phospholipase C-beta1. J. Biol. Chem. 281, 33087-33094. https://doi.org/10.1074/jbc.M606487200
  52. Park, D., Jhon, D. Y., Lee, C. W., Ryu, S. H. and Rhee, S. G. (1993) Removal of the carboxyl-terminal region of phospholipase C-beta 1 by calpain abolishes activation by G alpha q. J. Biol. Chem. 268, 3710-3714.
  53. Smrcka, A. V. and Sternweis, P. C. (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. J. Biol. Chem. 268, 9667-9674.
  54. Lee, C. W., Lee, K. H., Lee, S. B., Park, D. and Rhee, S. G. (1994) Regulation of phospholipase C-beta 4 by ribonucleotides and the alpha subunit of Gq. J. Biol. Chem. 269, 25335-25338.
  55. Camps, M., Carozzi, A., Schnabel, P., Scheer, A., Parker, P. J. and Gierschik, P. (1992) Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma- subunits. Nature 360, 684-686. https://doi.org/10.1038/360684a0
  56. Runnels, L. W. and Scarlata, S. F. (1999) Determination of the affinities between heterotrimeric G protein subunits and their phospholipase C-beta effectors. Biochemistry 38, 1488-1496. https://doi.org/10.1021/bi9821519
  57. Offermanns, S., Toombs, C. F., Hu, Y. H. and Simon, M. I. (1997) Defective platelet activation in G alpha(q)-deficient mice. Nature 389, 183-186. https://doi.org/10.1038/38284
  58. Lee, S. B., Shin, S. H., Hepler, J. R., Gilman, A. G. and Rhee, S. G. (1993) Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits. J. Biol. Chem. 268, 25952-25957.
  59. Wang, T., Pentyala, S., Rebecchi, M. J. and Scarlata, S. (1999) Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Biochemistry 38, 1517-1524. https://doi.org/10.1021/bi982008f
  60. Dippel, E., Kalkbrenner, F., Wittig, B. and Schultz, G. (1996) A heterotrimeric G protein complex couples the muscarinic m1 receptor to phospholipase C-beta. Proc. Natl. Acad. Sci. U. S. A. 93, 1391-1396. https://doi.org/10.1073/pnas.93.4.1391
  61. Biddlecome, G. H., Berstein, G. and Ross, E. M. (1996) Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor- mediated activation and GTPase-activating protein- promoted deactivation. J. Biol. Chem. 271, 7999-8007. https://doi.org/10.1074/jbc.271.14.7999
  62. Divecha, N. and Irvine, R. F. (1995) Phospholipid signaling. Cell 80, 269-278. https://doi.org/10.1016/0092-8674(95)90409-3
  63. Cocco, L., Capitani, S., Maraldi, N. M., Mazzotti, G., Barnabei, O., Rizzoli, R., Gilmour, R. S., Wirtz, K. W., Rhee, S. G. and Manzoli, F. A. (1998) Inositides in the nucleus: taking stock of PLC beta 1. Adv. Enzyme Regul. 38, 351-363. https://doi.org/10.1016/S0065-2571(97)00014-9
  64. Martelli, A. M., Gilmour, R. S., Bertagnolo, V., Neri, L. M., Manzoli, L. and Cocco, L. (1992) Nuclear localization and signalling activity of phosphoinositidase C beta in Swiss 3T3 cells. Nature 358, 242-245. https://doi.org/10.1038/358242a0
  65. Divecha, N., Letcher, A. J., Banfic, H. H., Rhee, S. G. and Irvine, R. F. (1995) Changes in the components of a nuclear inositide cycle during differentiation in murine erythroleukaemia cells. Biochem. J. 312(Pt 1), 63-67. https://doi.org/10.1042/bj3120063
  66. Kim, C. G., Park, D. and Rhee, S. G. (1996) The role of carboxyl-terminal basic amino acids in Gqalpha-dependent activation, particulate association, and nuclear localization of phospholipase C-beta1. J. Biol. Chem. 271, 21187-21192. https://doi.org/10.1074/jbc.271.35.21187
  67. Payrastre, B., Nievers, M., Boonstra, J., Breton, M., Verkleij, A. J. and Van Bergen en Henegouwen, P. M. (1992) A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J. Biol. Chem. 267, 5078-5084.
  68. Deleris, P., Bacqueville, D., Gayral, S., Carrez, L., Salles, J. P., Perret, B. and Breton-Douillon, M. (2003) SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J. Biol. Chem. 278, 38884-38891. https://doi.org/10.1074/jbc.M300816200
  69. Didichenko, S. A. and Thelen, M. (2001) Phosphatidylinositol 3-kinase c2alpha contains a nuclear localization sequence and associates with nuclear speckles. J. Biol. Chem. 276, 48135-48142. https://doi.org/10.1074/jbc.M104610200
  70. Tabellini, G., Bortul, R., Santi, S., Riccio, M., Baldini, G., Cappellini, A., Billi, A. M., Berezney, R., Ruggeri, A., Cocco, L. and Martelli, A. M. (2003) Diacylglycerol kinase- theta is localized in the speckle domains of the nucleus. Exp. Cell Res. 287, 143-154. https://doi.org/10.1016/S0014-4827(03)00115-0
  71. Fiume, R., Faenza, I., Matteucci, A., Astolfi, A., Vitale, M., Martelli, A. M. and Cocco, L. (2005) Nuclear phospholipase C beta1 (PLCbeta1) affects CD24 expression in murine erythroleukemia cells. J. Biol. Chem. 280, 24221-24226. https://doi.org/10.1074/jbc.M411833200
  72. Lo Vasco, V. R., Calabrese, G., Manzoli, L., Palka, G., Spadano, A., Morizio, E., Guanciali-Franchi, P., Fantasia, D. and Cocco, L. (2004) Inositide-specific phospholipase c beta1 gene deletion in the progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 18, 1122-1126. https://doi.org/10.1038/sj.leu.2403368
  73. Follo, M. Y., Mongiorgi, S., Bosi, C., Cappellini, A., Finelli, C., Chiarini, F., Papa, V., Libra, M., Martinelli, G., Cocco, L. and Martelli, A. M. (2007) The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res. 67, 4287-4294. https://doi.org/10.1158/0008-5472.CAN-06-4409
  74. Kaminskas, E., Farrell, A., Abraham, S., Baird, A., Hsieh, L. S., Lee, S. L., Leighton, J. K., Patel, H., Rahman, A., Sridhara, R., Wang, Y. C. and Pazdur, R. (2005) Approval summary: azacitidine for treatment of .myelodysplastic syndrome subtypes. Clin. Cancer Res. 11, 3604-3608 https://doi.org/10.1158/1078-0432.CCR-04-2135
  75. Silverman, L. R., Demakos, E. P., Peterson, B. L., Kornblith, A. B., Holland, J. C., Odchimar-Reissig, R., Stone, R. M., Nelson, D., Powell, B. L., DeCastro, C. M., Ellerton, J., Larson, R. A., Schiffer, C. A. and Holland, J. F. (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol. 20, 2429-2440. https://doi.org/10.1200/JCO.2002.04.117
  76. Daskalakis, M., Nguyen, T. T., Nguyen, C., Guldberg, P., Kohler, G., Wijermans, P., Jones, P. A. and Lubbert, M. (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2'-deoxycytidine (decitabine) treatment. Blood 100, 2957-2964. https://doi.org/10.1182/blood.V100.8.2957
  77. Follo, M. Y., Finelli, C., Bosi, C., Martinelli, G., Mongiorgi, S., Baccarani, M., Manzoli, L., Blalock, W. L., Martelli, A. M. and Cocco, L. (2008) PI-PLCbeta-1 and activated Akt levels are linked to azacitidine responsiveness in high-risk myelodysplastic syndromes. Leukemia 22, 198-200. https://doi.org/10.1038/sj.leu.2404855
  78. Cheson, B. D., Greenberg, P. L., Bennett, J. M., Lowenberg, B., Wijermans, P. W., Nimer, S. D., Pinto, A., Beran, M., de Witte, T. M., Stone, R. M., Mittelman, M., Sanz, G. F., Gore, S. D., Schiffer, C. A. and Kantarjian, H. (2006) Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 108, 419-425. https://doi.org/10.1182/blood-2005-10-4149
  79. Cocco, L., Martelli, A. M., Vitale, M., Falconi, M., Barnabei, O., Stewart Gilmour, R. and Manzoli, F. A. (2002) Inositides in the nucleus: regulation of nuclear PI-PLCbeta1. Adv. Enzyme Regul. 42, 181-193. https://doi.org/10.1016/S0065-2571(01)00030-9
  80. Faenza, I., Matteucci, A., Manzoli, L., Billi, A. M., Aluigi, M., Peruzzi, D., Vitale, M., Castorina, S., Suh, P. G. and Cocco, L. (2000) A role for nuclear phospholipase Cbeta 1 in cell cycle control. J. Biol. Chem. 275, 30520-30524. https://doi.org/10.1074/jbc.M004630200
  81. Faenza, I., Ramazzotti, G., Bavelloni, A., Fiume, R., Gaboardi, G. C., Follo, M. Y., Gilmour, R. S., Martelli, A. M., Ravid, K. and Cocco, L. (2007) Inositide-dependent phospholipase C signaling mimics insulin in skeletal muscle differentiation by affecting specific regions of the cyclin D3 promoter. Endocrinology 148, 1108-1117. https://doi.org/10.1210/en.2006-1003
  82. Kim, D., Jun, K. S., Lee, S. B., Kang, N. G., Min, D. S., Kim, Y. H., Ryu, S. H., Suh, P. G. and Shin, H. S. (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290-293. https://doi.org/10.1038/38508
  83. Jiang, H., Kuang, Y., Wu, Y., Xie, W., Simon, M. I. and Wu, D. (1997) Roles of phospholipase C beta2 in chemoattractant- elicited responses. Proc. Natl. Acad. Sci. U. S. A. 94, 7971-7975. https://doi.org/10.1073/pnas.94.15.7971
  84. Xie, W., Samoriski, G. M., McLaughlin, J. P., Romoser, V. A., Smrcka, A., Hinkle, P. M., Bidlack, J. M., Gross, R. A., Jiang, H. and Wu, D. (1999) Genetic alteration of phospholipase C beta3 expression modulates behavioral and cellular responses to mu opioids. Proc. Natl. Acad. Sci. U. S. A. 96, 10385-10390. https://doi.org/10.1073/pnas.96.18.10385
  85. Jiang, H., Lyubarsky, A., Dodd, R., Vardi, N., Pugh, E., Baylor, D., Simon, M. I. and Wu, D. (1996) Phospholipase C beta 4 is involved in modulating the visual response in mice. Proc. Natl. Acad. Sci. U. S. A. 93, 14598-14601. https://doi.org/10.1073/pnas.93.25.14598
  86. Katan, M. (1998) Families of phosphoinositide-specific phospholipase C: structure and function. Biochim. Biophys. Acta. 1436, 5-17. https://doi.org/10.1016/S0005-2760(98)00125-8
  87. Katan, M. and Williams, R. L. (1997) Phosphoinositidespecific phospholipase C: structural basis for catalysis and regulatory interactions. Semin. Cell Dev. Biol. 8, 287-296. https://doi.org/10.1006/scdb.1997.0150
  88. Carpenter, G. and Ji, Q. (1999) Phospholipase C-gamma as a signal-transducing element. Exp. Cell Res. 253, 15-24. https://doi.org/10.1006/excr.1999.4671
  89. Kamat, A. and Carpenter, G. (1997) Phospholipase C-gamma1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev. 8, 109-117. https://doi.org/10.1016/S1359-6101(97)00003-8
  90. Sekiya, F., Poulin, B., Kim, Y. J. and Rhee, S. G. (2004) Mechanism of tyrosine phosphorylation and activation of phospholipase C-gamma 1. Tyrosine 783 phosphorylation is not sufficient for lipase activation. J. Biol. Chem. 279, 32181-32190. https://doi.org/10.1074/jbc.M405116200
  91. Poulin, B., Sekiya, F. and Rhee, S. G. (2005) Intramolecular interaction between phosphorylated tyrosine-783 and the C-terminal Src homology 2 domain activates phospholipase C-gamma1. Proc. Natl. Acad. Sci. U. S. A. 102, 4276-4281. https://doi.org/10.1073/pnas.0409590102
  92. Espagnolle, N., Depoil, D., Zaru, R., Demeur, C., Champagne, E., Guiraud, M. and Valitutti, S. (2007) CD2 and TCR synergize for the activation of phospholipase Cgamma1/calcium pathway at the immunological synap se. Int. Immunol. 19, 239-248. https://doi.org/10.1093/intimm/dxl141
  93. Marrero, M. B., Paxton, W. G., Schieffer, B., Ling, B. N. and Bernstein, K. E. (1996) Angiotensin II signalling events mediated by tyrosine phosphorylation. Cell. Signal. 8, 21-26. https://doi.org/10.1016/0898-6568(95)02016-0
  94. Venema, V. J., Ju, H., Sun, J., Eaton, D. C., Marrero, M. B. and Venema, R. C. (1998) Bradykinin stimulates the tyrosine phosphorylation and bradykinin B2 receptor association of phospholipase C gamma 1 in vascular endothelial cells. Biochem. Biophys. Res. Commun. 246, 70-75. https://doi.org/10.1006/bbrc.1998.8574
  95. Sozzani, P., Hasan, L., Seguelas, M. H., Caput, D., Ferrara, P., Pipy, B. and Cambon, C. (1998) IL-13 induces tyrosine phosphorylation of phospholipase C gamma-1 following IRS-2 association in human monocytes: relationship with the inhibitory effect of IL-13 on ROI production. Biochem. Biophys. Res. Commun. 244, 665-670. https://doi.org/10.1006/bbrc.1998.8314
  96. Kurosaki, T., Maeda, A., Ishiai, M., Hashimoto, A., Inabe, K. and Takata, M. (2000) Regulation of the phospholipase C-gamma2 pathway in B cells. Immunol. Rev. 176, 19-29. https://doi.org/10.1034/j.1600-065X.2000.00605.x
  97. Watson, S. P., Auger, J. M., McCarty, O. J. and Pearce, A. C. (2005) GPVI and integrin alphaIIb beta3 signaling in platelets. J. Thromb. Haemost. 3, 1752-1762. https://doi.org/10.1111/j.1538-7836.2005.01429.x
  98. Wen, R., Jou, S. T., Chen, Y., Hoffmeyer, A. and Wang, D. (2002) Phospholipase C gamma 2 is essential for specific functions of Fc epsilon R and Fc gamma R. J. Immunol. 169, 6743-6752. https://doi.org/10.4049/jimmunol.169.12.6743
  99. Wilde, J. I., and Watson, S. P. (2001) Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other?. Cell. Signal. 13, 691-701. https://doi.org/10.1016/S0898-6568(01)00191-7
  100. Haendeler, J., Yin, G., Hojo, Y., Saito, Y., Melaragno, M., Yan, C., Sharma, V. K., Heller, M., Aebersold, R. and Berk, B. C. (2003) GIT1 mediates Src-dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor. J. Biol. Chem. 278, 49936-49944. https://doi.org/10.1074/jbc.M307317200
  101. Jones, N. P., Peak, J., Brader, S., Eccles, S. A. and Katan, M. (2005) PLCgamma1 is essential for early events in integrin signalling required for cell motility. J. Cell Sci. 118, 2695-2706. https://doi.org/10.1242/jcs.02374
  102. Jones, N. P. and Katan, M. (2007) Role of Phospholipase C${\gamma}$1 in Cell Spreading Requires Association with a $\beta$-Pix/ GIT1-Containing Complex, Leading to Activation of Cdc42 and Rac1. Mol. Cell. Biol. 27, 5790-5805. https://doi.org/10.1128/MCB.00778-07
  103. Chang, J. S., Seok, H., Kwon, T. K., Min, D. S., Ahn, B. H., Lee, Y. H., Suh, J. W., Kim, J. W., Iwashita, S., Omori, A., Ichinose, S., Numata, O., Seo, J. K., Oh, Y. S. and Suh, P. G. (2002) Interaction of elongation factor- 1alpha and pleckstrin homology domain of phospholipase C-gamma 1 with activating its activity. J. Biol. Chem. 277, 19697-19702. https://doi.org/10.1074/jbc.M111206200
  104. Choi, J. H., Bae, S. S., Park, J. B., Ha, S. H., Song, H., Kim, J. H., Cocco, L., Ryu, S. H. and Suh, P. G. (2003) Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-gamma1. Mol. Cells 15, 245-255
  105. Choi, J. H., Hong, W. P., Yun, S., Kim, H. S., Lee, J. R., Park, J. B., Bae, Y. S., Ryu, S. H. and Suh, P. G. (2005) Grb2 negatively regulates epidermal growth factor-induced phospholipase C-gamma1 activity through the direct interaction with tyrosine-phosphorylated phospholipase C-gamma1. Cell. Signal. 17, 1289-1299. https://doi.org/10.1016/j.cellsig.2005.01.005
  106. Song, M., Kim, M. J., Ha, S., Park, J. B., Ryu, S. H. and Suh, P. G. (2005) Inositol 5'-phosphatase, SHIP1 interacts with phospholipase C-gamma1 and modulates EGF-induced PLC activity. Exp. Mol. Med. 37, 161-168. https://doi.org/10.1038/emm.2005.22
  107. Bar-Sagi, D., Rotin, D., Batzer, A., Mandiyan, V. and Schlessinger, J. (1993) SH3 domains direct cellular localization of signaling molecules. Cell 74, 83-91. https://doi.org/10.1016/0092-8674(93)90296-3
  108. Dearden-Badet, M. T. and Mouchiroud, G. (2005) Re-distribution of phospholipase C gamma 2 in macrophage precursors is mediated by the actin cytoskeleton under the control of the Src kinases. Cell. Signal. 17, 1560-1571. https://doi.org/10.1016/j.cellsig.2005.03.018
  109. Nojiri, S. and Hoek, J. B. (2000) Suppression of epidermal growth factor-induced phospholipase C activation associated with actin rearrangement in rat hepatocytes in primary culture. Hepatology 32, 947-957. https://doi.org/10.1053/jhep.2000.18662
  110. Suzuki, K. and Takahashi, K. (2001) Actin filament assembly and actin-myosin contractility are necessary for anchorage- and EGF-dependent activation of phospholipase Cgamma. J. Cell. Physiol. 189, 64-71. https://doi.org/10.1002/jcp.1134
  111. Regunathan, J., Chen, Y., Kutlesa, S., Dai, X., Bai, L., Wen, R., Wang, D. and Malarkannan, S. (2006) Differential and nonredundant roles of phospholipase Cgamma2 and phospholipase Cgamma1 in the terminal maturation of NK cells. J. Immunol. 177, 5365-5376. https://doi.org/10.4049/jimmunol.177.8.5365
  112. Marshall, A. J., Niiro, H., Yun, T. J. and Clark, E. A. (2000) Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cgamma pathway. Immunol. Rev. 176, 30-46. https://doi.org/10.1034/j.1600-065X.2000.00611.x
  113. Satterthwaite, A. B., Li, Z. and Witte, O. N. (1998) Btk function in B cell development and response. Semin. Immunol. 10, 309-316. https://doi.org/10.1006/smim.1998.0123
  114. Yu, P., Constien, R., Dear, N., Katan, M., Hanke, P., Bunney, T. D., Kunder, S., Quintanilla-Martinez, L., Huffstadt, U., Schroder, A., Jones, N. P., Peters, T., Fuchs, H., de Angelis, M. H., Nehls, M., Grosse, J., Wabnitz, P., Meyer, T. P., Yasuda, K., Schiemann, M., Schneider-Fresenius, C., Jagla, W., Russ, A., Popp, A., Josephs, M., Marquardt, A., Laufs, J., Schmittwolf, C., Wagner, H., Pfeffer, K. and Mudde, G. C. (2005) Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C gamma 2 that specifically increases external $Ca^{2+}$ entry. Immunity 22, 451-465. https://doi.org/10.1016/j.immuni.2005.01.018
  115. Ji, Q. S., Winnier, G. E., Niswender, K. D., Horstman, D., Wisdom, R., Magnuson, M. A. and Carpenter, G. (1997) Essential role of the tyrosine kinase substrate phospholipase C-gamma1 in mammalian growth and development. Proc. Natl. Acad. Sci. U. S. A. 94, 2999-3003. https://doi.org/10.1073/pnas.94.7.2999
  116. Smith, M. R., Liu, Y. L., Kim, H., Rhee, S. G. and Kung, H. F. (1990) Inhibition of serum- and ras-stimulated DNA synthesis by antibodies to phospholipase C. Science 247, 1074-1077. https://doi.org/10.1126/science.2408147
  117. Wang, Z., Gluck, S., Zhang, L. and Moran, M. F. (1998) Requirement for phospholipase C-gamma1 enzymatic activity in growth factor-induced mitogenesis. Mol. Cell. Biol. 18, 590-597. https://doi.org/10.1128/MCB.18.1.590
  118. Mohammadi, M., Dionne, C. A., Li, W., Li, N., Spivak, T., Honegger, A. M., Jaye, M. and Schlessinger, J. (1992) Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358, 681-684. https://doi.org/10.1038/358681a0
  119. Bai, X. C., Deng, F., Liu, A. L., Zou, Z. P., Wang, Y., Ke, Z. Y., Ji, Q. S. and Luo, S. Q. (2002) Phospholipase C-gamma1 is required for cell survival in oxidative stress by protein kinase C. Biochem. J. 363, 395-401. https://doi.org/10.1042/0264-6021:3630395
  120. Mangat, R., Singal, T., Dhalla, N. S. and Tappia, P. S. (2006) Inhibition of phospholipase C-gamma 1 augments the decrease in cardiomyocyte viability by H2O2. Am. J. Physiol. Heart Circ. Physiol. 291, H854-860. https://doi.org/10.1152/ajpheart.01205.2005
  121. Oh, J. E., Kook, J. K., Park, K. H., Lee, G., Seo, B. M. and Min, B. M. (2003) Phospholipase C-gamma1 is required for subculture-induced terminal differentiation of normal human oral keratinocytes. Int. J. Mol. Med. 11, 491-498.
  122. Kolsch, V., Charest, P. G. and Firtel, R. A. (2008) The regulation of cell motility and chemotaxis by phospholipid signaling. J. Cell Sci. 121, 551-559. https://doi.org/10.1242/jcs.023333
  123. Kassis, J., Moellinger, J., Lo, H., Greenberg, N. M., Kim, H. G. and Wells, A. (1999) A role for phospholipase C-gamma-mediated signaling in tumor cell invasion. Clin. Cancer Res. 5, 2251-2260.
  124. Shepard, C. R., Kassis, J., Whaley, D. L., Kim, H. G. and Wells, A. (2007) PLC gamma contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26, 3020-3026. https://doi.org/10.1038/sj.onc.1210115
  125. Irvin, B. J., Williams, B. L., Nilson, A. E., Maynor, H. O. and Abraham, R. T. (2000) Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Mol. Cell. Biol. 20, 9149-9161. https://doi.org/10.1128/MCB.20.24.9149-9161.2000
  126. Tkaczyk, C., Beaven, M. A., Brachman, S. M., Metcalfe, D. D. and Gilfillan, A. M. (2003) The phospholipase C gamma 1-dependent pathway of Fc epsilon RI-mediated mast cell activation is regulated independently of phosphatidylinositol 3-kinase. J. Biol. Chem. 278, 48474-48484. https://doi.org/10.1074/jbc.M301350200
  127. Wells, A. D., Liu, Q. H., Hondowicz, B., Zhang, J., Turka, L. A. and Freedman, B. D. (2003) Regulation of T cell activation and tolerance by phospholipase C gamma- 1-dependent integrin avidity modulation. J. Immunol. 170, 4127-4133. https://doi.org/10.4049/jimmunol.170.8.4127
  128. Bae, S. S., Lee, Y. H., Chang, J. S., Galadari, S. H., Kim, Y. S., Ryu, S. H. and Suh, P. G. (1998) Src homology domains of phospholipase C gamma1 inhibit nerve growth factor- induced differentiation of PC12 cells. J. Neurochem. 71, 178-185. https://doi.org/10.1046/j.1471-4159.1998.71010178.x
  129. Lin, H. Y., Xu, J., Ischenko, I., Ornitz, D. M., Halegoua, S. and Hayman, M. J. (1998) Identification of the cytoplasmic regions of fibroblast growth factor (FGF) receptor 1 which play important roles in induction of neurite outgrowth in PC12 cells by FGF-1. Mol. Cell. Biol. 18, 3762-3770. https://doi.org/10.1128/MCB.18.7.3762
  130. Blum, S. and Dash, P. K. (2004) A cell-permeable phospholipase Cgamma1-binding peptide transduces neurons and impairs long-term spatial memory. Learn Mem. 11, 239-243. https://doi.org/10.1101/lm.74104
  131. Bolanos, C. A., Neve, R. L. and Nestler, E. J. (2005) Phospholipase C gamma in distinct regions of the ventral tegmental area differentially regulates morphine-induced locomotor activity. Synapse 56, 166-169. https://doi.org/10.1002/syn.20136
  132. Bolanos, C. A., Perrotti, L. I., Edwards, S., Eisch, A. J., Barrot, M., Olson, V. G., Russell, D. S., Neve, R. L. and Nestler, E. J. (2003) Phospholipase Cgamma in distinct regions of the ventral tegmental area differentially modulates mood-related behaviors. J. Neurosci. 23, 7569-7576. https://doi.org/10.1523/JNEUROSCI.23-20-07569.2003
  133. Turecki, G., Grof, P., Cavazzoni, P., Duffy, A., Grof, E., Ahrens, B., Berghofer, A., Muller-Oerlinghausen, B., Dvorakova, M., Libigerova, E., Vojtechovsky, M., Zvolsky, P., Joober, R., Nilsson, A., Prochazka, H., Licht, R. W., Rasmussen, N. A., Schou, M., Vestergaard, P., Holzinger, A., Schumann, C., Thau, K., Rouleau, G. A. and Alda, M. (1998) Evidence for a role of phospholipase C-gamma1 in the pathogenesis of bipolar disorder. Mol. Psychiatry 3, 534-538. https://doi.org/10.1038/sj.mp.4000447
  134. Suh, B. C. and Hille, B. (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr. Opin. Neurobiol. 15, 370-378. https://doi.org/10.1016/j.conb.2005.05.005
  135. Horowitz, L. F., Hirdes, W., Suh, B. C., Hilgemann, D. W., Mackie, K. and Hille, B. (2005) Phospholipase C in living cells: activation, inhibition, $Ca^{2+}$ requirement, and regulation of M current. J. Gen. Physiol. 126, 243-262. https://doi.org/10.1085/jgp.200509309
  136. Kobrinsky, E., Mirshahi, T., Zhang, H., Jin, T. and Logothetis, D. E. (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nat. Cell Biol. 2, 507-514. https://doi.org/10.1038/35019544
  137. Suh, B. C., Inoue, T., Meyer, T. and Hille, B. (2006) Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454-1457. https://doi.org/10.1126/science.1131163
  138. Clapham, D. E. (2003) TRP channels as cellular sensors. Nature 426, 517-524. https://doi.org/10.1038/nature02196
  139. Patterson, R. L., van Rossum, D. B., Ford, D. L., Hurt, K. J., Bae, S. S., Suh, P. G., Kurosaki, T., Snyder, S. H. and Gill, D. L. (2002) Phospholipase C-gamma is required for agonist-induced $Ca^{2+}$ entry. Cell 111, 529-541. https://doi.org/10.1016/S0092-8674(02)01045-0
  140. Hofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T. and Schultz, G. (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259-263. https://doi.org/10.1038/16711
  141. Venkatachalam, K., Ma, H. T., Ford, D. L. and Gill, D. L. (2001) Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J. Biol. Chem. 276, 33980-33985. https://doi.org/10.1074/jbc.C100321200
  142. van Rossum, D. B., Patterson, R. L., Sharma, S., Barrow, R. K., Kornberg, M., Gill, D. L. and Snyder, S. H. (2005) Phospholipase $C{\gamma}1$ controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434, 99-104. https://doi.org/10.1038/nature03340
  143. Huang, P. S., Davis, L., Huber, H., Goodhart, P. J., Wegrzyn, R. E., Oliff, A. and Heimbrook, D. C. (1995) An SH3 domain is required for the mitogenic activity of microinjected phospholipase C-gamma 1. FEBS Lett. 358, 287-292. https://doi.org/10.1016/0014-5793(94)01453-8
  144. Smith, M. R., Liu, Y. L., Matthews, N. T., Rhee, S. G., Sung, W. K. and Kung, H. F. (1994) Phospholipase C-gamma 1 can induce DNA synthesis by a mechanism independent of its lipase activity. Proc. Natl. Acad. Sci. U. S. A. 91, 6554-6558. https://doi.org/10.1073/pnas.91.14.6554
  145. Paronetto, M. P., Venables, J. P., Elliott, D. J., Geremia, R., Rossi, P. and Sette, C. (2003) Tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCgamma1 and Sam68. Oncogene 22, 8707-8715. https://doi.org/10.1038/sj.onc.1207016
  146. Tvorogov, D. and Carpenter, G. (2002) EGF-dependent association of phospholipase C-gamma1 with c-Cbl. Exp. Cell Res. 277, 86-94. https://doi.org/10.1006/excr.2002.5545
  147. Kim, M. J., Chang, J. S., Park, S. K., Hwang, J. I., Ryu, S. H. and Suh, P. G. (2000) Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-gamma1. Biochemistry 39, 8674-8682. https://doi.org/10.1021/bi992558t
  148. Choi, J. H., Park, J. B., Bae, S. S., Yun, S., Kim, H. S., Hong, W. P., Kim, I. S., Kim, J. H., Han, M. Y., Ryu, S. H., Patterson, R. L., Snyder, S. H. and Suh, P. G. (2004) Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis. J. Cell Sci. 117, 3785-3795. https://doi.org/10.1242/jcs.01220
  149. Ye, K., Aghdasi, B., Luo, H. R., Moriarity, J. L., Wu, F. Y., Hong, J. J., Hurt, K. J., Bae, S. S., Suh, P. G. and Snyder, S. H. (2002) Phospholipase C gamma 1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE. Nature 415, 541-544. https://doi.org/10.1038/415541a
  150. Ye, K. (2005) PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death. J. Cell Biochem. 96, 463-472. https://doi.org/10.1002/jcb.20549
  151. Ye, K. and Snyder, S. H. (2004) PIKE GTPase: a novel mediator of phosphoinositide signaling. J. Cell Sci. 117, 155-161. https://doi.org/10.1242/jcs.00924
  152. Choi, J. H., Yang, Y. R., Lee, S. K., Kim, I. S., Ha, S. H., Kim, E. K., Bae, Y. S., Ryu, S. H. and Suh, P. G. (2007) Phospholipase C-gamma1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation. Cell. Signal. 19, 1784-1796. https://doi.org/10.1016/j.cellsig.2007.04.002
  153. Kanner, S. B., Grosmaire, L. S., Ledbetter, J. A. and Damle, N. K. (1993) Beta 2-integrin LFA-1 signaling through phospholipase C-gamma 1 activation. Proc. Natl. Acad. Sci. U. S. A. 90, 7099-7103. https://doi.org/10.1073/pnas.90.15.7099
  154. Nakamura, I., Lipfert, L., Rodan, G. A. and Le, T. D. (2001) Convergence of alpha(v)beta(3) integrin- and macrophage colony stimulating factor-mediated signals on phospholipase Cgamma in prefusion osteoclasts. J. Cell Biol. 152, 361-373. https://doi.org/10.1083/jcb.152.2.361
  155. Tvorogov, D., Wang, X. J., Zent, R. and Carpenter, G. (2005) Integrin-dependent PLC-gamma1 phosphorylation mediates fibronectin-dependent adhesion. J. Cell Sci. 118, 601-610. https://doi.org/10.1242/jcs.01643
  156. Inoue, O., Suzuki-Inoue, K., Dean, W. L., Frampton, J. and Watson, S. P. (2003) Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J. Cell Biol. 160, 769-780. https://doi.org/10.1083/jcb.200208043
  157. Ohmori, T., Yatomi, Y., Wu, Y., Osada, M., Satoh, K. and Ozaki, Y. (2001) Wheat germ agglutinin-induced platelet activation via platelet endothelial cell adhesion molecule-1: involvement of rapid phospholipase C gamma 2 activation by Src family kinases. Biochemistry 40, 12992-13001. https://doi.org/10.1021/bi0109459
  158. Wonerow, P., Pearce, A. C., Vaux, D. J. and Watson, S. P. (2003) A critical role for phospholipase Cgamma2 in alphaIIbbeta3-mediated platelet spreading. J. Biol. Chem. 278, 37520-37529. https://doi.org/10.1074/jbc.M305077200
  159. Peak, J. C., Jones, N. P., Hobbs, S., Katan, M. and Eccles, S. A. (2008) Phospholipase Cgamma1 regulates the Rap GEF1-Rap1 signalling axis in the control of human prostate carcinoma cell adhesion. Oncogene 27, 2823-2832. https://doi.org/10.1038/sj.onc.1210954
  160. Irino, Y., Cho, H., Nakamura, Y., Nakahara, M., Furutani, M., Suh, P. G., Takenawa, T. and Fukami, K. (2004) Phospholipase C delta-type consists of three isozymes: bovine PLCdelta2 is a homologue of human/mouse PLCdelta4. Biochem. Biophys. Res. Commun. 320, 537-543. https://doi.org/10.1016/j.bbrc.2004.05.206
  161. Lemmon, M. A., Falasca, M., Ferguson, K. M. and Schlessinger, J. (1997) Regulatory requirement of signaling melecules to the cell membrane by pleckstrin-homology domains. Trends Cell Biol. 7, 237-242. https://doi.org/10.1016/S0962-8924(97)01065-9
  162. Kim, Y. H., Park, T. J., Lee, Y. H., Baek, K. J., Suh, P. G., Ryu, S. H. and Kim, K. T. (1999) Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation. J. Biol. Chem. 274, 26127-26134. https://doi.org/10.1074/jbc.274.37.26127
  163. Allen, V., Swigart, P., Cheung, R., Cockcroft, S. and Katan, M. (1997) Regulation of inositol lipid-specific phospholipase cdelta by changes in $Ca^{2+}$ ion concentrations. Biochem. J. 327, 545-552. https://doi.org/10.1042/bj3270545
  164. Feng, J. F., Rhee, S. G. and Im, M. J. (1996) Evidence that phospholipase delta1 is the effector in the Gh (transglutaminase II)-mediated signaling. J. Biol. Chem. 271, 16451-16454. https://doi.org/10.1074/jbc.271.28.16451
  165. Kang, S. K., Kim, D. K., Damron, D. S., Baek, K. J. and Im, M. J. (2002) Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha( h) (transglutaminase II) and phospholipase C-delta 1. Biochem. Biophys. Res. Commun. 293, 383-390. https://doi.org/10.1016/S0006-291X(02)00197-3
  166. Homma, Y. and Emori, Y. (1995) A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities. EMBO J. 14, 286-291.
  167. Sekimata, M., Kabuyama, Y., Emori, Y. and Homma, Y. (1999) Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. J. Biol. Chem. 274, 17757-17762. https://doi.org/10.1074/jbc.274.25.17757
  168. Nakamura, Y., Fukami, K., Yu, H., Takenaka, K., Kataoka, Y., Shirakata, Y., Nishikawa, S., Hashimoto, K., Yoshida, N. and Takenawa, T. (2003) Phospholipase Cdelta1 is required for skin stem cell lineage commitment. EMBO J. 22, 2981-2991. https://doi.org/10.1093/emboj/cdg302
  169. Li, M., Chiba, H., Warot, X., Messaddeq, N., Gerard, C., Chambon, P. and Metzger, D. (2001) RXR-alpha ablation in skin keratinocytes results in alopecia and epidermal alterations. Development 128, 675-688.
  170. Ichinohe, M., Nakamura, Y., Sai, K., Nakahara, M., Yamaguchi, H. and Fukami, K. (2007) Lack of phospholipase C-delta1 induces skin inflammation. Biochem. Biophys. Res. Commun. 356, 912-918. https://doi.org/10.1016/j.bbrc.2007.03.082
  171. Nakamura, Y., Ichinohe, M., Hirata, M., Matsuura, H., Fujiwara, T., Igarashi, T., Nakahara, M., Yamaguchi, H., Yasugi, S., Takenawa, T. and Fukami, K. (2008) Phospholipase C-delta1 is an essential molecule downstream of Foxn1, the gene responsible for the nude mutation, in normal hair development. FASEB J. 22, 841-849. https://doi.org/10.1096/fj.07-9239com
  172. Flanagan, S. P. (1966) 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet. Res. 8, 295-309. https://doi.org/10.1017/S0016672300010168
  173. Meier, N., Dear, T. N. and Boehm, T. (1999) Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. Mech. Dev. 89, 215-221. https://doi.org/10.1016/S0925-4773(99)00218-X
  174. Nakamura, Y., Hamada, Y., Fujiwara, T., Enomoto, H., Hiroe, T., Tanaka, S., Nose, M., Nakahara, M., Yoshida, N., Takenawa, T. and Fukami, K. (2005) Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol. Cell Biol. 25, 10979-10988. https://doi.org/10.1128/MCB.25.24.10979-10988.2005
  175. James, R. M., Klerkx, A. H., Keighren, M., Flockhart, J. H. and West, J. D. (1995) Restricted distribution of tetraploid cells in mouse tetraploid<==>diploid chimaeras. Dev. Biol. 167, 213-226. https://doi.org/10.1006/dbio.1995.1018
  176. Fukami, K., Nakao, K., Inoue, T., Kataoka, Y., Kurokawa, M., Fissore, R. A., Nakamura, K., Katsuki, M., Mikoshiba, K., Yoshida, N. and Takenawa, T. (2001) Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292, 920-923. https://doi.org/10.1126/science.1059042
  177. Darszon, A., Beltran, C., Felix, R., Nishigaki, T. and Trevino, C. L. (2001) Ion transport in sperm signaling. Dev. Biol. 240, 1-14. https://doi.org/10.1006/dbio.2001.0387
  178. Breitbart, H. (2002) Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol. Cell Endocrinol. 187, 139-144. https://doi.org/10.1016/S0303-7207(01)00704-3
  179. Fukami, K., Yoshida, M., Inoue, T., Kurokawa, M., Fissore, R. A., Yoshida, N., Mikoshiba, K. and Takenawa, T. (2003) Phospholipase Cdelta4 is required for $Ca^{2+}$ mobilization essential for acrosome reaction in sperm. J. Cell Biol. 161, 79-88. https://doi.org/10.1083/jcb.200210057
  180. Fu, L., Qin, Y. R., Xie, D., Hu, L., Kwong, D. L., Srivastava, G., Tsao, S. W. and Guan, X. Y. (2007) Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res. 67, 10720-10726. https://doi.org/10.1158/0008-5472.CAN-07-2411
  181. Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S. and Popescu, N. C. (1998) Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Res. 58, 2196-2199
  182. Yamaga, M., Fujii, M., Kamata, H., Hirata, H. and Yagisawa, H. (1999) Phospholipase C-delta1 contains a functional nuclear export signal sequence. J. Biol. Chem. 274, 28537-28541. https://doi.org/10.1074/jbc.274.40.28537
  183. Stallings, J. D., Tall, E. G., Pentyala, S. and Rebecchi, M. J. (2005) Nuclear translocation of phospholipase C-delta1 is linked to the cell cycle and nuclear phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 280, 22060-22069. https://doi.org/10.1074/jbc.M413813200
  184. Stallings, J. D., Zeng, Y. X., Narvaez, F. and Rebecchi, M. J. (2008) Phospholipase C-delta 1is linked to proliferation, DNA synthesis and cyclin E levels. J. Biol. Chem. 283, 13992-14001. https://doi.org/10.1074/jbc.M800752200
  185. Zhao, K., Wang, W., Rando, O. J., Xue, Y., Swiderek, K., Kuo, A. and Crabtree, G. R. (1998) Rapid and phosphoinositol- dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625-636. https://doi.org/10.1016/S0092-8674(00)81633-5
  186. Caprini, M., Gomis, A., Cabedo, H., Planells-Cases, R., Belmonte, C., Viana, F. and Ferrer-Montiel, A. (2003) GAP43 stimulates inositol trisphosphate-mediated calcium release in response to hypotonicity. EMBO J. 22, 3004-3014. https://doi.org/10.1093/emboj/cdg294
  187. Shibatohge, M., Kariya, K., Liao, Y., Hu, C. D., Watari, Y., Goshima, M., Shima, F. and Kataoka, T. (1998) Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J. Biol. Chem. 273, 6218-6222. https://doi.org/10.1074/jbc.273.11.6218
  188. Kelley, G. G., Reks, S. E., Ondrako, J. M. and Smrcka, A. V. (2001) Phospholipase C(epsilon): a novel Ras effector. EMBO J. 20, 743-754. https://doi.org/10.1093/emboj/20.4.743
  189. Song, C., Hu, C. D., Masago, M., Kariyai, K., Yamawaki- Kataoka, Y., Shibatohge, M., Wu, D., Satoh, T. and Kataoka, T. (2001) Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J. Biol. Chem. 276, 2752-2757. https://doi.org/10.1074/jbc.M008324200
  190. Bunney, T. D., Harris, R., Gandarillas, N. L., Josephs, M. B., Roe, S. M., Sorli, S. C., Paterson, H. F., Rodrigues-Lima, F., Esposito, D., Ponting, C. P., Gierschik, P., Pearl, L. H., Driscoll, P. C. and Katan, M. (2006) Structural and mechanistic insights into ras association domains of phospholipase C epsilon. Mol. Cell 21, 495-507. https://doi.org/10.1016/j.molcel.2006.01.008
  191. Jin, T. G., Satoh, T., Liao, Y., Song, C., Gao, X., Kariya, K., Hu, C. D. and Kataoka, T. (2001) Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling. J. Biol. Chem. 276, 30301-30307. https://doi.org/10.1074/jbc.M103530200
  192. Schmidt, M., Evellin, S., Weernink, P. A., von Dorp, F., Rehmann, H., Lomasney, J. W. and Jakobs, K. H. (2001) A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat. Cell Biol. 3, 1020-1024. https://doi.org/10.1038/ncb1101-1020
  193. Evellin, S., Nolte, J., Tysack, K., vom Dorp, F., Thiel, M., Weernink, P. A., Jakobs, K. H., Webb, E. J., Lomasney, J. W. and Schmidt, M. (2002) Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J. Biol. Chem. 277, 16805-16813. https://doi.org/10.1074/jbc.M112024200
  194. Hains, M. D., Wing, M. R., Maddileti, S., Siderovski, D. P. and Harden, T. K. (2006) Galpha12/13- and rho-dependent activation of phospholipase C-epsilon by lysophosphatidic acid and thrombin receptors. Mol. Pharmacol. 69, 2068-2075. https://doi.org/10.1124/mol.105.017921
  195. Kelley, G. G., Kaproth-Joslin, K. A., Reks, S. E., Smrcka, A. V. and Wojcikiewicz, R. J. (2006) G-protein-coupled receptor agonists activate endogenous phospholipase Cepsilon and phospholipase Cbeta3 in a temporally distinct manner. J. Biol. Chem. 281, 2639-2648. https://doi.org/10.1074/jbc.M507681200
  196. Seifert, J. P., Wing, M. R., Snyder, J. T., Gershburg, S., Sondek, J. and Harden, T. K. (2004) RhoA activates purified phospholipase C-epsilon by a guanine nucleotide-dependent mechanism. J. Biol. Chem. 279, 47992-47997. https://doi.org/10.1074/jbc.M407111200
  197. Yun, S., Moller, A., Chae, S. K., Hong, W. P., Bae, Y. J., Bowtell, D. D., Ryu, S. H. and Suh, P. G. (2008) Siah proteins induce the epidermal growth factor-dependent degradation of phospholipase Cepsilon. J. Biol. Chem. 283, 1034-1042. https://doi.org/10.1074/jbc.M705874200
  198. Song, C., Satoh, T., Edamatsu, H., Wu, D., Tadano, M., Gao, X. and Kataoka, T. (2002) Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene 21, 8105-8113. https://doi.org/10.1038/sj.onc.1206003
  199. Stope, M. B., Vom Dorp, F., Szatkowski, D., Bohm, A., Keiper, M., Nolte, J., Oude Weernink, P. A., Rosskopf, D., Evellin, S., Jakobs, K. H. and Schmidt, M. (2004) Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol. Cell Biol. 24, 4664-4676. https://doi.org/10.1128/MCB.24.11.4664-4676.2004
  200. Tadano, M., Edamatsu, H., Minamisawa, S., Yokoyama, U., Ishikawa, Y., Suzuki, N., Saito, H., Wu, D., Masago- Toda, M., Yamawaki-Kataoka, Y., Setsu, T., Terashima, T., Maeda, S., Satoh, T. and Kataoka, T. (2005) Congenital semilunar valvulogenesis defect in mice deficient in phospholipase C epsilon. Mol.Cell Biol. 25, 2191-2199. https://doi.org/10.1128/MCB.25.6.2191-2199.2005
  201. Wang, H., Oestreich, E. A., Maekawa, N., Bullard, T. A., Vikstrom, K. L., Dirksen, R. T., Kelley, G. G., Blaxall, B. C. and Smrcka, A. V. (2005) Phospholipase C epsilon modulates beta-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ. Res. 97, 1305-1313. https://doi.org/10.1161/01.RES.0000196578.15385.bb
  202. Hinkes, B., Wiggins, R. C., Gbadegesin, R., Vlangos, C. N., Seelow, D., Nurnberg, G., Garg, P., Verma, R., Chaib, H., Hoskins, B. E., Ashraf, S., Becker, C., Hennies, H. C., Goyal, M., Wharram, B. L., Schachter, A. D., Mudumana, S., Drummond, I., Kerjaschki, D., Waldherr, R., Dietrich, A., Ozaltin, F., Bakkaloglu, A., Cleper, R., Basel-Vanagaite, L., Pohl, M., Griebel, M., Tsygin, A. N., Soylu, A., Muller, D., Sorli, C. S., Bunney, T. D., Katan, M., Liu, J., Attanasio, M., O'Toole J, F., Hasselbacher, K., Mucha, B., Otto, E. A., Airik, R., Kispert, A., Kelley, G. G., Smrcka, A. V., Gudermann, T., Holzman, L. B., Nurnberg, P. and Hildebrandt, F. (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397-1405. https://doi.org/10.1038/ng1918
  203. Vazquez-Manrique, R. P., Nagy, A. I., Legg, J. C., Bales, O. A., Ly, S. and Baylis, H. A. (2008) Phospholipase C-epsilon regulates epidermal morphogenesis in Caenorhabditis elegans. PLoS Genet. 4, e1000043. https://doi.org/10.1371/journal.pgen.1000043
  204. Bai, Y., Edamatsu, H., Maeda, S., Saito, H., Suzuki, N., Satoh, T. and Kataoka, T. (2004) Crucial role of phospholipase Cepsilon in chemical carcinogen-induced skin tumor development. Cancer Res. 64, 8808-8810. https://doi.org/10.1158/0008-5472.CAN-04-3143
  205. Ikuta, S., Edamatsu, H., Li, M., Hu, L. and Kataoka, T. (2008) Crucial role of phospholipase C epsilon in skin inflammation induced by tumor-promoting phorbol ester. Cancer Res. 68, 64-72. https://doi.org/10.1158/0008-5472.CAN-07-3245
  206. Yun, S., Hong, W. P., Choi, J. H., Yi, K. S., Chae, S. K., Ryu, S. H. and Suh, P. G. (2008) Phospholipase C-epsilon augments epidermal growth factor-dependent cell growth by inhibiting epidermal growth factor receptor down-regulation. J. Biol. Chem. 283, 341-349. https://doi.org/10.1074/jbc.M704180200
  207. Citro, S., Malik, S., Oestreich, E. A., Radeff-Huang, J., Kelley, G. G., Smrcka, A. V. and Brown, J. H. (2007) Phospholipase Cepsilon is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proc. Natl. Acad. Sci. U. S. A. 104, 15543-15548. https://doi.org/10.1073/pnas.0702943104
  208. Swann, K., Saunders, C. M., Rogers, N. T. and Lai, F. A. (2006) PLCzeta(zeta): a sperm protein that triggers $Ca^{2+}$ oscillations and egg activation in mammals. Semin. Cell Dev. Biol. 17, 264-273. https://doi.org/10.1016/j.semcdb.2006.03.009
  209. Kouchi, Z., Shikano, T., Nakamura, Y., Shirakawa, H., Fukami, K. and Miyazaki, S. (2005) The role of EF-hand domains and C2 domain in regulation of enzymatic activity of phospholipase Czeta. J. Biol. Chem. 280, 21015-21021. https://doi.org/10.1074/jbc.M412123200
  210. Nomikos, M., Blayney, L. M., Larman, M. G., Campbell, K., Rossbach, A., Saunders, C. M., Swann, K. and Lai, F. A. (2005) Role of phospholipase C-zeta domains in $Ca^{2+}$-dependent phosphatidylinositol 4,5-bisphosphate hydrolysis and cytoplasmic $Ca^{2+}$ oscillations. J. Biol. Chem. 280, 31011-31018 https://doi.org/10.1074/jbc.M500629200
  211. Flesch, F. M., Yu, J. W., Lemmon, M. A. and Burger, K. N. (2005) Membrane activity of the phospholipase C-delta1 pleckstrin homology (PH) domain. Biochem. J. 389, 435-441. https://doi.org/10.1042/BJ20041721
  212. Razzini, G., Brancaccio, A., Lemmon, M. A., Guarnieri, S. and Falasca, M. (2000) The role of the pleckstrin homology domain in membrane targeting and activation of phospholipase Cbeta(1). J. Biol. Chem. 275, 14873-14881. https://doi.org/10.1074/jbc.275.20.14873

Cited by

  1. Phosphoproteomics analyses show subnetwork systems in T-cell receptor signaling vol.21, pp.10, 2016, https://doi.org/10.1111/gtc.12406
  2. Nuclear phospholipase C β1 signaling, epigenetics and treatments in MDS vol.53, pp.1, 2013, https://doi.org/10.1016/j.jbior.2012.09.009
  3. Critical roles of Gi/oproteins and phospholipase C-δ1 in the activation of receptor-operated TRPC4 channels vol.113, pp.4, 2016, https://doi.org/10.1073/pnas.1522294113
  4. Phospholipase C-eta2 is highly expressed in the habenula and retina vol.10, pp.2-3, 2010, https://doi.org/10.1016/j.gep.2009.12.004
  5. Evodiamine inhibits adipogenesis via the EGFR-PKCα-ERK signaling pathway vol.583, pp.22, 2009, https://doi.org/10.1016/j.febslet.2009.10.046
  6. Expression and function of phospholipase C in breast carcinoma vol.49, pp.1, 2009, https://doi.org/10.1016/j.advenzreg.2009.01.009
  7. Phospholipase C-η2 interacts with nuclear and cytoplasmic LIMK-1 during retinoic acid-stimulated neurite growth vol.145, pp.2, 2016, https://doi.org/10.1007/s00418-015-1390-7
  8. Analysis of the phospholipase C-δ1 pleckstrin homology domain using native polyacrylamide gel electrophoresis vol.431, pp.2, 2012, https://doi.org/10.1016/j.ab.2012.09.012
  9. The effect of membrane domains on the G protein–phospholipase Cβ signaling pathway vol.45, pp.2, 2010, https://doi.org/10.3109/10409231003598812
  10. Phosphoinositide phosphatases and disease vol.50, pp.Supplement, 2009, https://doi.org/10.1194/jlr.R800072-JLR200
  11. Phospholipase Cε, an Effector of Ras and Rap Small GTPases, Is Required for Airway Inflammatory Response in a Mouse Model of Bronchial Asthma vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0108373
  12. Impairment and reorganization of the phosphoinositide-specific phospholipase C enzymes in suicide brains vol.174, 2015, https://doi.org/10.1016/j.jad.2014.12.006
  13. Divergent effect of mammalian PLCζ in generating Ca2+oscillations in somatic cells compared with eggs vol.438, pp.3, 2011, https://doi.org/10.1042/BJ20101581
  14. 1p36.32 rearrangements and the role of PI-PLC η2 in nervous tumours vol.103, pp.3, 2011, https://doi.org/10.1007/s11060-010-0422-3
  15. Mammalian phosphoinositide kinases and phosphatases vol.48, pp.6, 2009, https://doi.org/10.1016/j.plipres.2009.06.001
  16. Expression of Phosphoinositide-Specific Phospholipase C Isoforms in Native Endothelial Cells vol.10, pp.4, 2015, https://doi.org/10.1371/journal.pone.0123769
  17. Phospholipase Cϵ Activates Nuclear Factor-κB Signaling by Causing Cytoplasmic Localization of Ribosomal S6 Kinase and Facilitating Its Phosphorylation of Inhibitor κB in Colon Epithelial Cells vol.291, pp.24, 2016, https://doi.org/10.1074/jbc.M116.717561
  18. Signal-activated phospholipase regulation of leukocyte chemotaxis: Fig. 1. vol.50, pp.Supplement, 2009, https://doi.org/10.1194/jlr.R800096-JLR200
  19. A Specific Phospholipase C Activity Regulates Phosphatidylinositol Levels in Lung Surfactant of Patients with Acute Respiratory Distress Syndrome vol.42, pp.3, 2010, https://doi.org/10.1165/rcmb.2009-0078OC
  20. Fibroblast growth factor acts upon the transcription of phospholipase C genes in human umbilical vein endothelial cells vol.388, pp.1-2, 2014, https://doi.org/10.1007/s11010-013-1898-x
  21. Phospholipase Cβ interacts with cytosolic partners to regulate cell proliferation 2017, https://doi.org/10.1016/j.jbior.2017.09.004
  22. Phosphoinositide and phospholipid phosphorylation and hydrolysis pathways<br/>—Organophosphate and organochlorine pesticides effects<br> vol.03, pp.03, 2013, https://doi.org/10.4236/abc.2013.33A004
  23. Revisiting nuclear phospholipase C signalling in MDS vol.52, pp.1, 2012, https://doi.org/10.1016/j.advenzreg.2011.09.018
  24. Nuclear inositide signaling in myelodysplastic syndromes 2010, https://doi.org/10.1002/jcb.22483
  25. Osmotic Stress Reduces Ca2+Signals through Deformation of Caveolae vol.290, pp.27, 2015, https://doi.org/10.1074/jbc.M115.655126
  26. Differential Regulation of Phospholipase C-β2Activity and Membrane Interaction by Gαq, Gβ1γ2, and Rac2 vol.285, pp.6, 2010, https://doi.org/10.1074/jbc.M109.085100
  27. Phospholipase Cγ1 suppresses foreign body giant cell formation by maintaining RUNX1 expression in macrophages vol.482, pp.4, 2017, https://doi.org/10.1016/j.bbrc.2016.11.152
  28. Nonhydrolyzable analogs of phosphatidylinositol as ligands of phospholipases C vol.34, pp.5, 2010, https://doi.org/10.1039/b9nj00629j
  29. Characterization of Phospholipase Cγ Enzymes with Gain-of-Function Mutations vol.284, pp.34, 2009, https://doi.org/10.1074/jbc.M109.019265
  30. Physiological functions of phospholipase Cδ1 and phospholipase Cδ3 vol.53, pp.3, 2013, https://doi.org/10.1016/j.jbior.2013.07.003
  31. IP3 receptor signaling and endothelial barrier function 2017, https://doi.org/10.1007/s00018-017-2624-8
  32. The Black Box Illuminated: Signals and Signaling vol.132, pp.3, 2012, https://doi.org/10.1038/jid.2011.406
  33. Phospholipase Cβ connects G protein signaling with RNA interference vol.61, 2016, https://doi.org/10.1016/j.jbior.2015.11.006
  34. Insulin Receptor-Mediated Signaling via Phospholipase C-γ Regulates Growth and Differentiation in Drosophila vol.6, pp.11, 2011, https://doi.org/10.1371/journal.pone.0028067
  35. The role of phospholipase Cγ1 in breast cancer and its clinical significance vol.13, pp.22, 2017, https://doi.org/10.2217/fon-2017-0125
  36. LPS, Oleuropein and Blueberry extracts affect the survival, morphology and Phosphoinositide signalling in stimulated human endothelial cells 2017, https://doi.org/10.1007/s12079-017-0391-9
  37. Phosphoinositides signalling in cancer: Focus on PI3K and PLC vol.52, pp.1, 2012, https://doi.org/10.1016/j.advenzreg.2011.09.016
  38. “This is where it all started” – the pivotal role of PLCζ within the sophisticated process of mammalian reproduction: a systemic review vol.27, pp.1, 2017, https://doi.org/10.1186/s12610-017-0054-y
  39. The effect of a thieno[2,3-b]pyridine PLC-γ inhibitor on the proliferation, morphology, migration and cell cycle of breast cancer cells vol.5, pp.1, 2014, https://doi.org/10.1039/C3MD00290J
  40. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function vol.290, pp.34, 2015, https://doi.org/10.1074/jbc.M115.645671
  41. Intramolecular allosteric interaction in the phospholipase C-δ1 pleckstrin homology domain vol.1834, pp.6, 2013, https://doi.org/10.1016/j.bbapap.2013.01.034
  42. The Novel Functions of the PLC/PKC/PKD Signaling Axis in G Protein-Coupled Receptor-Mediated Chemotaxis of Neutrophils vol.2015, 2015, https://doi.org/10.1155/2015/817604
  43. Role of Phosphoinositide-Specific Phospholipase C η2 in Isolated and Syndromic Mental Retardation vol.65, pp.5, 2011, https://doi.org/10.1159/000327307
  44. The correlation between multidomain enzymes and multiple activation mechanisms— The case of phospholipase Cβ and its membrane interactions vol.1808, pp.12, 2011, https://doi.org/10.1016/j.bbamem.2011.08.028
  45. Genetic Defect in Phospholipase C 1 Protects Mice From Obesity by Regulating Thermogenesis and Adipogenesis vol.60, pp.7, 2011, https://doi.org/10.2337/db10-1500
  46. The opposite correlation between calcium ion and cyclic-AMP regarding the activation of microsomal triglyceride transfer protein in rat liver vol.42, pp.10, 2009, https://doi.org/10.5483/BMBRep.2009.42.10.642
  47. Phospholipase C-η2 is activated by elevated intracellular Ca2+ levels vol.23, pp.11, 2011, https://doi.org/10.1016/j.cellsig.2011.06.012
  48. A novel N-ethyl-N-nitrosourea-induced mutation in phospholipase Cγ2 causes inflammatory arthritis, metabolic defects, and male infertility in vitro in a murine model vol.63, pp.5, 2011, https://doi.org/10.1002/art.30280
  49. Functional analysis of duplicated genes and N-terminal splice variant of phospholipase C-δ1 in Paralichthys olivaceus vol.165, pp.3, 2013, https://doi.org/10.1016/j.cbpb.2013.04.005
  50. GPCR-mediated PLC  /PKC /PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis vol.26, pp.5, 2015, https://doi.org/10.1091/mbc.E14-05-0982
  51. Inositide-dependent signaling pathways as new therapeutic targets in myelodysplastic syndromes vol.20, pp.6, 2016, https://doi.org/10.1517/14728222.2016.1125885
  52. Activating CYSLTR2 and PLCB4 Mutations in Primary Leptomeningeal Melanocytic Tumors vol.137, pp.9, 2017, https://doi.org/10.1016/j.jid.2017.04.022
  53. Dysfunction of phospholipase Cγ in immune disorders and cancer vol.39, pp.12, 2014, https://doi.org/10.1016/j.tibs.2014.09.004
  54. Molecular cytogenetic interphase analysis of Phosphoinositide-specific Phospholipase C β1 gene in paraffin-embedded brain samples of major depression patients vol.136, pp.1-2, 2012, https://doi.org/10.1016/j.jad.2011.07.023
  55. Novel p104 protein regulates cell proliferation through PI3K inhibition and p27Kip1 expression vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.199
  56. PLC? and the initiation of Ca2+ oscillations in fertilizing mammalian eggs vol.53, pp.1, 2013, https://doi.org/10.1016/j.ceca.2012.11.001
  57. Surfactant phospholipid metabolism vol.1831, pp.3, 2013, https://doi.org/10.1016/j.bbalip.2012.09.010
  58. Oocyte activation deficiency: a role for an oocyte contribution? vol.22, pp.1, 2016, https://doi.org/10.1093/humupd/dmv040
  59. Restoration of Responsiveness of Phospholipase Cγ2-Deficient Platelets by Enforced Expression of Phospholipase Cγ1 vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0119739
  60. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity vol.1861, pp.9, 2016, https://doi.org/10.1016/j.bbalip.2016.01.017
  61. Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations vol.14, pp.3, 2013, https://doi.org/10.3390/ijms14035036
  62. HeLa cell response proteome alterations induced by mammalian reovirus T3D infection vol.10, pp.1, 2013, https://doi.org/10.1186/1743-422X-10-202
  63. A knowledge-driven interaction analysis reveals potential neurodegenerative mechanism of multiple sclerosis susceptibility vol.12, pp.5, 2011, https://doi.org/10.1038/gene.2011.3
  64. Immune regulation by phospholipase C-β isoforms vol.56, pp.1, 2013, https://doi.org/10.1007/s12026-012-8341-3
  65. The development of thieno[2,3-b]pyridine analogues as anticancer agents applying in silico methods vol.5, pp.2, 2014, https://doi.org/10.1039/c3md00320e
  66. The Small G Protein Rac1 Activates Phospholipase Cδ1 through Phospholipase Cβ2 vol.285, pp.32, 2010, https://doi.org/10.1074/jbc.M110.132654
  67. Ezrin silencing remodulates the expression of Phosphoinositide-specific Phospholipase C enzymes in human osteosarcoma cell lines vol.8, pp.3, 2014, https://doi.org/10.1007/s12079-014-0235-9
  68. Genetic and transcriptional analysis of phosphoinositide-specific phospholipase C in Plasmodium vol.129, pp.1, 2011, https://doi.org/10.1016/j.exppara.2011.05.023
  69. Phospholipase C-β3 Regulates FcɛRI-Mediated Mast Cell Activation by Recruiting the Protein Phosphatase SHP-1 vol.34, pp.6, 2011, https://doi.org/10.1016/j.immuni.2011.04.010
  70. Modulation of Ca2+ Activity in Cardiomyocytes through Caveolae-Gαq Interactions vol.100, pp.7, 2011, https://doi.org/10.1016/j.bpj.2011.02.013
  71. Expression of phosphoinositide-specific phospholipase C enzymes in normal endometrium and in endometriosis vol.98, pp.2, 2012, https://doi.org/10.1016/j.fertnstert.2012.04.020
  72. Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance vol.49, pp.4, 2010, https://doi.org/10.1016/j.plipres.2010.06.001
  73. Interplay between Cell Migration and Neurite Outgrowth Determines SH2B1β-Enhanced Neurite Regeneration of Differentiated PC12 Cells vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0034999
  74. Regulation of the activity of the promoter of RNA-induced silencing, C3PO vol.26, pp.9, 2017, https://doi.org/10.1002/pro.3219
  75. Molecular characterization and expression analysis of olive flounder ( Paralichthys olivaceus ) phospholipase C gamma 1 and gamma 2 vol.63, 2017, https://doi.org/10.1016/j.fsi.2016.11.052
  76. Targeted molecular investigation in patients within the clinical spectrum of Auriculocondylar syndrome vol.173, pp.4, 2017, https://doi.org/10.1002/ajmg.a.38101
  77. The breast cancer susceptibility gene product (γ-synuclein) alters cell behavior through it interaction with phospholipase Cβ vol.28, pp.1, 2016, https://doi.org/10.1016/j.cellsig.2015.10.018
  78. The effect of imiquimod on taste bud calcium transients and transmitter secretion vol.173, pp.21, 2016, https://doi.org/10.1111/bph.13567
  79. Phospholipase Cδ3 is a novel binding partner of myosin VI and functions as anchoring of myosin VI on plasma membrane vol.51, pp.1, 2011, https://doi.org/10.1016/j.advenzreg.2010.09.014
  80. PDZ Domain-containing 1 (PDZK1) Protein Regulates Phospholipase C-β3 (PLC-β3)-specific Activation of Somatostatin by Forming a Ternary Complex with PLC-β3 and Somatostatin Receptors vol.287, pp.25, 2012, https://doi.org/10.1074/jbc.M111.337865
  81. Sperm PLCζ: From structure to Ca2+oscillations, egg activation and therapeutic potential vol.587, pp.22, 2013, https://doi.org/10.1016/j.febslet.2013.10.008
  82. PLC regulation: emerging pictures for molecular mechanisms vol.36, pp.2, 2011, https://doi.org/10.1016/j.tibs.2010.08.003
  83. Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis vol.11, pp.8, 2011, https://doi.org/10.1002/pmic.201000424
  84. EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling vol.30, pp.2, 2012, https://doi.org/10.3109/08977194.2011.649918
  85. Switching Heterotrimeric G Protein Subunits with a Chemical Dimerizer vol.18, pp.9, 2011, https://doi.org/10.1016/j.chembiol.2011.07.013
  86. Hydrolysis Rates of Different Small Interfering RNAs (siRNAs) by the RNA Silencing Promoter Complex, C3PO, Determines Their Regulation by Phospholipase Cβ vol.289, pp.8, 2014, https://doi.org/10.1074/jbc.M113.531467
  87. Splice site SNPs of phospholipase PLCXD3 are significantly associated with variant and sporadic Creutzfeldt-Jakob disease vol.14, pp.1, 2013, https://doi.org/10.1186/1471-2350-14-91
  88. Severe infantile epileptic encephalopathy due to mutations inPLCB1: expansion of the genotypic and phenotypic disease spectrum vol.56, pp.11, 2014, https://doi.org/10.1111/dmcn.12450
  89. The glycerophosphoinositols: cellular metabolism and biological functions vol.66, pp.21, 2009, https://doi.org/10.1007/s00018-009-0113-4
  90. Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology vol.1851, pp.6, 2015, https://doi.org/10.1016/j.bbalip.2014.12.011
  91. Overexpression of phospholipase Cε in keratinocytes upregulates cytokine expression and causes dermatitis with acanthosis and T-cell infiltration vol.41, pp.1, 2011, https://doi.org/10.1002/eji.201040675
  92. Features of Ca2+ signaling in proliferating and in differentiating murine myoblasts vol.55, pp.4, 2010, https://doi.org/10.1134/S0006350910040093
  93. Expression analysis and enzymatic characterization of phospholipase Cδ4 from olive flounder (Paralichthys olivaceus) vol.166, pp.3-4, 2013, https://doi.org/10.1016/j.cbpb.2013.09.001
  94. A Self-Scaffolding Model for G Protein Signaling vol.387, pp.1, 2009, https://doi.org/10.1016/j.jmb.2009.01.051
  95. Improved Side Chain Dynamics in MARTINI Simulations of Protein–Lipid Interfaces vol.12, pp.5, 2016, https://doi.org/10.1021/acs.jctc.6b00122
  96. Phospholipase Cβ-TRAX Association Is Required for PC12 Cell Differentiation vol.291, pp.44, 2016, https://doi.org/10.1074/jbc.M116.744953
  97. Effect of phosphate on aluminium-inhibited growth and signal transduction pathways in Coffea arabica suspension cells vol.103, pp.11, 2009, https://doi.org/10.1016/j.jinorgbio.2009.07.020
  98. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity vol.51, pp.3, 2012, https://doi.org/10.1016/j.plipres.2012.03.002
  99. Activation of phospholipase C-γ1 and translocation of phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase contribute to GL-V9-induced apoptosis in human gastric cancer cells 2017, https://doi.org/10.1016/j.yexcr.2017.03.063
  100. Phosphoinositide-specific Phospholipase C β1 gene deletion in bipolar disorder affected patient vol.7, pp.1, 2013, https://doi.org/10.1007/s12079-012-0182-2
  101. Neuroketotherapeutics: A modern review of a century-old therapy 2017, https://doi.org/10.1016/j.neuint.2017.05.019
  102. Involvement of PLC-β3 in the effect of morphine on memory retrieval in passive avoidance task vol.24, pp.6, 2010, https://doi.org/10.1177/0269881108102013
  103. Evidence for a Second, High Affinity Gβγ Binding Site on Gαi1(GDP) Subunits vol.284, pp.25, 2009, https://doi.org/10.1074/jbc.M109.006585
  104. Phospholipase Cβ3 membrane adsorption and activation is regulated by its C-terminal domains and PIP2 2017, https://doi.org/10.1021/acs.biochem.7b00547
  105. Phospholipase C-independent effects of 3M3FBS in murine colon vol.628, pp.1-3, 2010, https://doi.org/10.1016/j.ejphar.2009.11.029
  106. Phospholipase C-δ1 regulates interleukin-1β and tumor necrosis factor-α mRNA expression vol.318, pp.16, 2012, https://doi.org/10.1016/j.yexcr.2012.06.010
  107. Deletion of PLCB1 gene in schizophrenia-affected patients vol.16, pp.4, 2012, https://doi.org/10.1111/j.1582-4934.2011.01363.x
  108. Ezrin-related Phosphoinositide pathway modifies RhoA and Rac1 in human osteosarcoma cell lines vol.9, pp.1, 2015, https://doi.org/10.1007/s12079-015-0265-y
  109. In silico transcriptional regulation and functional analysis of dengue shock syndrome associated SNPs in PLCE1 and MICB genes vol.16, pp.3, 2016, https://doi.org/10.1007/s10142-016-0489-9
  110. PLCε cooperates with the NF-κB pathway to augment TNFα-stimulated CCL2/MCP1 expression in human keratinocyte vol.414, pp.1, 2011, https://doi.org/10.1016/j.bbrc.2011.09.032
  111. Role of the phosphoinositide signal transduction pathway in the endometrium vol.1, pp.3, 2012, https://doi.org/10.1016/S2305-0500(13)60086-X
  112. Twenty-first century mast cell stabilizers vol.170, pp.1, 2013, https://doi.org/10.1111/bph.12138
  113. Comparison of Phosphoinositide-Specific Phospholipase C Expression Panels of Human Osteoblasts Versus MG-63 and Saos Osteoblast-Like Cells vol.4, pp.2, 2016, https://doi.org/10.17795/ajmb-34104
  114. Critical Role for Mast Cell Stat5 Activity in Skin Inflammation vol.6, pp.2, 2014, https://doi.org/10.1016/j.celrep.2013.12.029
  115. Simultaneous loss of phospholipase Cδ1 and phospholipase Cδ3 causes cardiomyocyte apoptosis and cardiomyopathy vol.5, pp.5, 2014, https://doi.org/10.1038/cddis.2014.181
  116. Molecular cloning and characterization of PLCB1 (phospholipase C, beta 1) gene from the olive flounder, Paralichthys olivaceus vol.33, pp.6, 2011, https://doi.org/10.1007/s13258-011-0100-7
  117. Expression of Phosphoinositide-Specific Phospholipase C Enzymes in Human Skin Fibroblasts vol.54, pp.1, 2013, https://doi.org/10.3109/03008207.2012.712584
  118. Ca2+-independent Binding of Anionic Phospholipids by Phospholipase C δ1 EF-hand Domain vol.288, pp.52, 2013, https://doi.org/10.1074/jbc.M113.512186
  119. Odorant-stimulated phosphoinositide signaling in mammalian olfactory receptor neurons vol.22, pp.1, 2010, https://doi.org/10.1016/j.cellsig.2009.09.026
  120. Mechanism of Activation and Inactivation of Gq/Phospholipase C-β Signaling Nodes vol.111, pp.10, 2011, https://doi.org/10.1021/cr200209p
  121. Calcium signaling in mammalian egg activation and embryo development: The influence of subcellular localization vol.79, pp.11, 2012, https://doi.org/10.1002/mrd.22078
  122. Increases in intracellular calcium via activation of potentially multiple phospholipase C isozymes in mouse olfactory neurons vol.8, 2014, https://doi.org/10.3389/fncel.2014.00336
  123. Role of phospholipase Cε in physiological phosphoinositide signaling networks vol.24, pp.6, 2012, https://doi.org/10.1016/j.cellsig.2012.01.009
  124. Phosphoinositide signalling in cancer: beyond PI3K and PTEN vol.10, pp.5, 2010, https://doi.org/10.1038/nrc2842
  125. An autoinhibitory helix in the C-terminal region of phospholipase C-β mediates Gαq activation vol.18, pp.9, 2011, https://doi.org/10.1038/nsmb.2095
  126. Structural and Functional Integration of the PLCγ Interaction Domains Critical for Regulatory Mechanisms and Signaling Deregulation vol.20, pp.12, 2012, https://doi.org/10.1016/j.str.2012.09.005
  127. Elevated levels of alpha-synuclein blunt cellular signal transduction downstream of Gq protein-coupled receptors vol.30, 2017, https://doi.org/10.1016/j.cellsig.2016.11.012
  128. Role of phospholipase C-β in RNA interference vol.53, pp.3, 2013, https://doi.org/10.1016/j.jbior.2013.07.002
  129. Roles of phosphoinositide-specific phospholipase Cγ1 in brain development vol.60, 2016, https://doi.org/10.1016/j.jbior.2015.10.002
  130. Neuropeptide Receptors vol.2, pp.1, 2013, https://doi.org/10.4199/C00082ED1V01Y201304NPE004
  131. Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia vol.24, pp.7, 2015, https://doi.org/10.1093/hmg/ddu610
  132. Phospholipase Cβ4 isozyme is expressed in human, rat, and murine heart left ventricles and in HL-1 cardiomyocytes vol.337, pp.1-2, 2010, https://doi.org/10.1007/s11010-009-0296-x
  133. The Proteome of Mouse Cerebral Arteries vol.34, pp.6, 2014, https://doi.org/10.1038/jcbfm.2014.52
  134. PLC-δ1-Lf, a novel N-terminal extended phospholipase C-δ1 vol.528, pp.2, 2013, https://doi.org/10.1016/j.gene.2013.07.022
  135. Mechanisms of glycerophospholipid homeostasis in mammalian cells vol.50, pp.3, 2011, https://doi.org/10.1016/j.plipres.2011.02.004
  136. Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C vol.231, pp.8, 2016, https://doi.org/10.1002/jcp.25273
  137. Suppression of PLCβ2 by Endotoxin Plays a Role in the Adenosine A2A Receptor-Mediated Switch of Macrophages from an Inflammatory to an Angiogenic Phenotype vol.175, pp.6, 2009, https://doi.org/10.2353/ajpath.2009.090290
  138. Starting a new life: Sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development vol.34, pp.2, 2012, https://doi.org/10.1002/bies.201100127
  139. Regulatory links between PLC enzymes and Ras superfamily GTPases: Signalling via PLCɛ vol.49, pp.1, 2009, https://doi.org/10.1016/j.advenzreg.2009.01.004
  140. Phosphatidylinositol phospholipase C mediates carbon sensing and vegetative nuclear duplication rates inAspergillus nidulans vol.57, pp.7, 2011, https://doi.org/10.1139/w11-034
  141. Super-resolution Visualization of Caveola Deformation in Response to Osmotic Stress vol.292, pp.9, 2017, https://doi.org/10.1074/jbc.M116.768499
  142. Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi vol.30, pp.3, 2017, https://doi.org/10.1038/modpathol.2016.201
  143. Genome-wide association study identifies eight loci associated with blood pressure vol.41, pp.6, 2009, https://doi.org/10.1038/ng.361
  144. Primary phospholipase C and brain disorders vol.61, 2016, https://doi.org/10.1016/j.jbior.2015.11.003
  145. Recurrent triploidy due to a failure to complete maternal meiosis II: whole-exome sequencing reveals candidate variants vol.21, pp.4, 2015, https://doi.org/10.1093/molehr/gau112
  146. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving Phosphoinositide-specific Phospholipases C vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-1768-6
  147. Identification of a Novel Binding Partner of Phospholipase Cβ1: Translin-Associated Factor X vol.5, pp.11, 2010, https://doi.org/10.1371/journal.pone.0015001
  148. Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells vol.394, pp.1-2, 2014, https://doi.org/10.1007/s11010-014-2079-2
  149. A Loss in Cellular Protein Partners Promotes α-Synuclein Aggregation in Cells Resulting from Oxidative Stress vol.52, pp.22, 2013, https://doi.org/10.1021/bi4002425
  150. Cloning, tissue distribution and sub-cellular localisation of phospholipase C X-domain containing protein (PLCXD) isoforms vol.424, pp.4, 2012, https://doi.org/10.1016/j.bbrc.2012.06.079
  151. Intracellular calcium level is an important factor influencing ion channel modulations by PLC-coupled metabotropic receptors in hippocampal neurons vol.1512, 2013, https://doi.org/10.1016/j.brainres.2013.03.040
  152. Lypopolysaccharide Downregulates the Expression of Selected Phospholipase C Genes in Cultured Endothelial Cells vol.36, pp.4, 2013, https://doi.org/10.1007/s10753-013-9613-3
  153. DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling vol.72, pp.20, 2015, https://doi.org/10.1007/s00018-015-1982-3
  154. Expression of Phosphoinositide-specific phospholipase C enzymes in human osteosarcoma cell lines vol.7, pp.2, 2013, https://doi.org/10.1007/s12079-013-0194-6
  155. K562 cell proliferation is modulated by PLCβ1 through a PKCα-mediated pathway vol.12, pp.11, 2013, https://doi.org/10.4161/cc.24806
  156. Single Macromolecule Diffusion in Confined Environments vol.32, pp.18, 2011, https://doi.org/10.1002/marc.201100076
  157. Epidermal phospholipase Cδ1 regulates granulocyte counts and systemic interleukin-17 levels in mice vol.3, 2012, https://doi.org/10.1038/ncomms1960
  158. The effect of PLC-γ2 inhibitors on the growth of human tumour cells vol.54, 2012, https://doi.org/10.1016/j.ejmech.2012.05.029
  159. Phosphoinositide-specific Phospholipase C β 1b (PI-PLCβ1b) Interactome: Affinity Purification-Mass Spectrometry Analysis of PI-PLCβ1b with Nuclear Protein vol.12, pp.8, 2013, https://doi.org/10.1074/mcp.M113.029686
  160. Phosphorylation of Phospholipase C-δ1Regulates its Enzymatic Activity vol.108, pp.3, 2009, https://doi.org/10.1002/jcb.22297
  161. Molecular mechanisms of fMLP-induced superoxide generation and degranulation in mouse neutrophils vol.53, pp.1, 2013, https://doi.org/10.1016/j.jbior.2012.09.001
  162. Structural divergence and loss of phosphoinositide-specific phospholipase C signaling components during the evolution of the green plant lineage: implications from structural characteristics of algal components vol.5, 2014, https://doi.org/10.3389/fpls.2014.00380
  163. The SPS Affair: A Complex Tale of Illicit Proliferation vol.16, pp.2, 2009, https://doi.org/10.1016/j.ccr.2009.07.005
  164. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases vol.46, 2016, https://doi.org/10.1016/j.actbio.2016.09.018
  165. Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology vol.10, pp.1, 2012, https://doi.org/10.1186/1478-811X-10-12
  166. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C γ2 (PLCγ2) using TRPM7-kinase vol.24, pp.11, 2012, https://doi.org/10.1016/j.cellsig.2012.06.015
  167. Phospholipase C-γ1 involved in brain disorders vol.53, pp.1, 2013, https://doi.org/10.1016/j.jbior.2012.09.008
  168. Different expression and subcellular localization of Phosphoinositide-specific Phospholipase C enzymes in differently polarized macrophages vol.10, pp.4, 2016, https://doi.org/10.1007/s12079-016-0335-9
  169. 2-Aminohydroxamic acid derivatives as inhibitors of Bacillus cereus phosphatidylcholine preferred phospholipase C PC-PLCBc vol.18, pp.24, 2010, https://doi.org/10.1016/j.bmc.2010.10.031
  170. Pharmacogenetic implications for eight common blood pressure-associated single-nucleotide polymorphisms vol.30, pp.6, 2012, https://doi.org/10.1097/HJH.0b013e3283536338
  171. Membrane-induced Allosteric Control of Phospholipase C-β Isozymes vol.289, pp.43, 2014, https://doi.org/10.1074/jbc.M114.586784
  172. Mammalian Phospholipase C vol.75, pp.1, 2013, https://doi.org/10.1146/annurev-physiol-030212-183750
  173. The guanine nucleotide exchange factor Rlf interacts with SH3 domain-containing proteins via a binding site with a preselected conformation vol.183, pp.3, 2013, https://doi.org/10.1016/j.jsb.2013.07.009
  174. Identification of Leptospira interrogans Phospholipase C as a Novel Virulence Factor Responsible for Intracellular Free Calcium Ion Elevation during Macrophage Death vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0075652
  175. Putative roles for phospholipase Cη enzymes in neuronal Ca2+signal modulation vol.40, pp.1, 2012, https://doi.org/10.1042/BST20110622
  176. Signalling in the genomic era vol.4, pp.3, 2010, https://doi.org/10.1007/s12079-010-0091-1
  177. Expression pattern and sub-cellular distribution of phosphoinositide specific phospholipase C enzymes after treatment with U-73122 in rat astrocytoma cells vol.110, pp.4, 2010, https://doi.org/10.1002/jcb.22614
  178. Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation vol.46, pp.2, 2014, https://doi.org/10.1007/s10863-014-9540-5
  179. Diverse cellular and physiological roles of phospholipase C-γ1 vol.52, pp.1, 2012, https://doi.org/10.1016/j.advenzreg.2011.09.017
  180. UCP2 upregulation promotes PLCγ-1 signaling during skin cell transformation vol.56, pp.10, 2017, https://doi.org/10.1002/mc.22684
  181. Phospholipase C-β1 and β4 Contribute to Non-Genetic Cell-to-Cell Variability in Histamine-Induced Calcium Signals in HeLa Cells vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0086410
  182. Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant vol.7, pp.6, 2012, https://doi.org/10.1371/journal.pone.0039203
  183. Tsg101 regulates PI(4,5)P2/Ca2+ signaling for HIV-1 Gag assembly vol.5, 2014, https://doi.org/10.3389/fmicb.2014.00234
  184. Expression of phospholipase C β1 in olive flounder (Paralichthys olivaceus) following external stress stimulation vol.19, pp.1, 2016, https://doi.org/10.1186/s41240-016-0019-7
  185. PLCζ and its role as a trigger of development in vertebrates vol.78, pp.10-11, 2011, https://doi.org/10.1002/mrd.21359
  186. Cellular neurochemical characterization and subcellular localization of phospholipase C β1 in rat brain vol.222, 2012, https://doi.org/10.1016/j.neuroscience.2012.06.039
  187. Reduction of phosphoinositide-phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS vol.106, pp.39, 2009, https://doi.org/10.1073/pnas.0907109106
  188. PLCB1 epileptic encephalopathies; Review and expansion of the phenotypic spectrum vol.20, pp.3, 2016, https://doi.org/10.1016/j.ejpn.2016.01.002
  189. ESCRT Machinery Potentiates HIV-1 Utilization of the PI(4,5)P2-PLC-IP3R-Ca2+ Signaling Cascade vol.413, pp.2, 2011, https://doi.org/10.1016/j.jmb.2011.08.038
  190. Mutations in PLCδ1 associated with hereditary leukonychia display divergent PIP2 hydrolytic function vol.283, pp.24, 2016, https://doi.org/10.1111/febs.13939
  191. Phosphoinositide pathway and the signal transduction network in neural development vol.28, pp.6, 2012, https://doi.org/10.1007/s12264-012-1283-x
  192. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom vol.80, pp.10, 2013, https://doi.org/10.1002/mrd.22222
  193. Roles of Phospholipase C Isozymes in Organogenesis and Embryonic Development vol.24, pp.6, 2009, https://doi.org/10.1152/physiol.00031.2009
  194. Membrane Environment Exerts an Important Influence on Rac-Mediated Activation of Phospholipase C 2 vol.31, pp.6, 2011, https://doi.org/10.1128/MCB.01408-10
  195. Nuclear PLCs affect insulin secretion by targeting PPARγ in pancreatic β cells vol.26, pp.1, 2012, https://doi.org/10.1096/fj.11-186510
  196. Phospholipase Cβ1 is linked to RNA interference of specific genes through translin-associated factor X vol.26, pp.12, 2012, https://doi.org/10.1096/fj.12-213934
  197. The Phospholipase C Inhibitor U73122 Attenuates trans-10, cis-12 Conjugated Linoleic Acid-Mediated Inflammatory Signaling and Insulin Resistance in Human Adipocytes vol.143, pp.5, 2013, https://doi.org/10.3945/jn.112.173161
  198. Molecular Mechanisms of N-Formyl-Methionyl-Leucyl-Phenylalanine-Induced Superoxide Generation and Degranulation in Mouse Neutrophils: Phospholipase D Is Dispensable vol.33, pp.1, 2013, https://doi.org/10.1128/MCB.00869-12
  199. Distinct Phospholipase C-  Isozymes Mediate Lysophosphatidic Acid Receptor 1 Effects on Intestinal Epithelial Homeostasis and Wound Closure vol.33, pp.10, 2013, https://doi.org/10.1128/MCB.00038-13
  200. PLC- 1 Signaling Plays a Subtype-Specific Role in Postbinding Cell Entry of Influenza A Virus vol.88, pp.1, 2014, https://doi.org/10.1128/JVI.02591-13
  201. RNA-induced silencing attenuates G protein–mediated calcium signals vol.30, pp.5, 2016, https://doi.org/10.1096/fj.201500140
  202. -dependent phospholipase C pathway that regulates ∆N TRPV1-mediated currents in rat supraoptic neurons vol.5, pp.8, 2017, https://doi.org/10.14814/phy2.13259
  203. The Role of Phospholipase C Signaling in Macrophage-Mediated Inflammatory Response vol.2018, pp.2314-7156, 2018, https://doi.org/10.1155/2018/5201759
  204. Phosphoinositide-specific phospholipase C in normal human liver and in alcohol abuse pp.07302312, 2018, https://doi.org/10.1002/jcb.28067
  205. –Dependent IL-8 Release in Cystic Fibrosis vol.59, pp.4, 2018, https://doi.org/10.1165/rcmb.2017-0267OC
  206. Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity vol.51, pp.8, 2018, https://doi.org/10.5483/BMBRep.2018.51.8.080
  207. Whole exome sequencing identifies a novel dominant missense mutation underlying leukonychia in a Pakistani family vol.63, pp.10, 2018, https://doi.org/10.1038/s10038-018-0491-2
  208. MARCKS and MARCKS-like proteins in development and regeneration vol.25, pp.1, 2018, https://doi.org/10.1186/s12929-018-0445-1
  209. Phospholipase Cβ1 regulates proliferation of neuronal cells vol.32, pp.5, 2018, https://doi.org/10.1096/fj.201701284R
  210. Silencing of phospholipase C gamma 2 promotes proliferation of rat hepatocytes in vitro vol.119, pp.5, 2018, https://doi.org/10.1002/jcb.26592