Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna ;
  • Silverman, Neal
  • Accepted : 2008.02.25
  • Published : 2008.04.30


Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.


Drosophila immunity;Innate immunity;Negative regulation;NF-${\kappa}B$;Signal transduction


  1. Brennan, C. A. and Anderson, K. V. (2004) Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22, 457-483
  2. Cherry, S. and Silverman, N. (2006) Host-pathogen interactions in drosophila: new tricks from an old friend. Nat. Immunol. 7, 911-917
  3. Hultmark, D. (2003) Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12-19
  4. Lemaitre, B. and Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743
  5. Werner, T., Liu, G., Kang, D., Ekengren, S., Steiner, H. and Hultmark, D. (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 97, 13772-13777
  6. Takehana, A., Katsuyama, T., Yano, T., Oshima, Y., Takada, H., Aigaki, T. and Kurata, S. (2002) Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. U.S.A. 99, 13705-13710.
  7. Gottar, M., Gobert, V., Matskevich, A. A., Reichhart, J. M., Wang, C., Butt, T. M., Belvin, M., Hoffmann, J. A. and Ferrandon, D. (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425-1437
  8. Gobert, V., Gottar, M., Matskevich, A. A., Rutschmann, S., Royet, J., Belvin, M., Hoffmann, J. A. and Ferrandon, D. (2003) Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302, 2126-2130
  9. Pili-Floury, S., Leulier, F., Takahashi, K., Saigo, K., Samain, E., Ueda, R. and Lemaitre, B. (2004) In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J. Biol. Chem. 279, 12848-12853
  10. Bischoff, V., Vignal, C., Duvic, B., Boneca, I. G., Hoffmann, J. A. and Royet, J. (2006) Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14
  11. Zaidman-Remy, A., Herve, M., Poidevin, M., Pili-Floury, S., Kim, M. S., Blanot, D., Oh, B. H., Ueda, R., Mengin-Lecreulx, D. and Lemaitre, B. (2006) The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463-473
  12. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. and Hoffmann, J. A. (1996) The dorsoventral regulatory gene cassette Spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983
  13. Hu, X., Yagi, Y., Tanji, T., Zhou, S. and Ip, Y. T. (2004) Multimerization and interaction of Toll and Spätzle in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 101, 9369-9374.
  14. Weber, A. N., Tauszig-Delamasure, S., Hoffmann, J. A., Lelievre, E., Gascan, H., Ray, K. P., Morse, M. A., Imler, J. L. and Gay, N. J. (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol. 4, 794-800
  15. Kambris, Z., Brun, S., Jang, I. H., Nam, H. J., Romeo, Y., Takahashi, K., Lee, W. J., Ueda, R. and Lemaitre, B. (2006) Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16, 808-813
  16. Bischoff, V., Vignal, C., Boneca, I. G., Michel, T., Hoffmann, J. A. and Royet, J. (2004) Function of the Drosophila pattern- recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat. Immunol. 5, 1175-1180
  17. Michel, T., Reichhart, J. M., Hoffmann, J. A. and Royet, J. (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759
  18. Wang, L., Weber, A. N., Atilano, M. L., Filipe, S. R., Gay, N. J. and Ligoxygakis, P. (2006) Sensing of Gram-positive bacteria in Drosophila: GNBP1 is needed to process and present peptidoglycan to PGRP-SA. EMBO. J. 25, 5005-5014
  19. Levashina, E. A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J. A. and Reichhart, J. M. (1999) Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917-1919
  20. Ligoxygakis, P., Pelte, N., Hoffmann, J. A. and Reichhart, J. M. (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297, 114-116
  21. Jang, I. H., Chosa, N., Kim, S. H., Nam, H. J., Lemaitre, B., Ochiai, M., Kambris, Z., Brun, S., Hashimoto, C., Ashida, M., Brey, P. T. and Lee, W. J. (2006) A Spatzle-processing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell. 10, 45-55
  22. Sun, H., Bristow, B. N., Qu, G. and Wasserman, S. A. (2002) A heterotrimeric death domain complex in Toll signaling. Proc. Natl. Acad. Sci. U.S.A. 99, 12871-12876.
  23. Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A. and Imler, J. L. (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat. Immunol. 3, 91-97
  24. Towb, P., Galindo, R. L. and Wasserman, S. A. (1998) Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 125, 2443-2450
  25. Fernandez, N. Q., Grosshans, J., Goltz, J. S. and Stein, D. (2001) Separable and redundant regulatory determinants in Cactus mediate its dorsal group dependent degradation. Development 128, 2963-2974
  26. Belvin, M. P., Jin, Y. and Anderson, K. V. (1995) Cactus protein degradation mediates Drosophila dorsal-ventral signaling. Genes Dev. 9, 783-793
  27. Bergmann, A., Stein, D., Geisler, R., Hagenmaier, S., Schmid, B., Fernandez, N., Schnell, B. and Nusslein-Volhard, C. (1996) A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech. Dev. 60, 109-123
  28. Gillespie, S. K. and Wasserman, S. A. (1994) Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol. Cell. Biol. 14, 3559-3568
  29. Reach, M., Galindo, R. L., Towb, P., Allen, J. L., Karin, M. and Wasserman, S. A. (1996) A gradient of cactus protein degradation establishes dorsoventral polarity in the Drosophila embryo. Dev. Biol. 180, 353-364
  30. Wu, L. P. and Anderson, K. V. (1998) Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392, 93-97
  31. De Gregorio, E., Han, S. J., Lee, W. J., Baek, M. J., Osaki, T., Kawabata, S., Lee, B. L., Iwanaga, S., Lemaitre, B. and Brey, P. T. (2002) An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell. 3, 581-592
  32. De Gregorio, E., Spellman, P. T., Rubin, G. M. and Lemaitre, B. (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. U.S.A. 98, 12590-12595.
  33. Irving, P., Troxler, L., Heuer, T. S., Belvin, M., Kopczynski, C., Reichhart, J. M., Hoffmann, J. A. and Hetru, C. (2001) A genome-wide analysis of immune responses in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 98, 15119-15124
  34. Kaneko, T., Yano, T., Aggarwal, K., Lim, J. H., Ueda, K., Oshima, Y., Peach, C., Erturk-Hasdemir, D., Goldman, W. E., Oh, B. H., Kurata, S. and Silverman, N. (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol. 7, 715-723
  35. Choe, K. M., Werner, T., Stöven, S., Hultmark, D. and Anderson, K. V. (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359-362
  36. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. and Ezekowitz, R. A. (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644-648
  37. Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J. A., Ferrandon, D. and Royet, J. (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640-644
  38. Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J. H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D. and Lemaitre, B. (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4, 478-484
  39. Kaneko, T., Goldman, W. E., Mellroth, P., Steiner, H., Fukase, K., Kusumoto, S., Harley, W., Fox, A., Golenbock, D. and Silverman, N. (2004) Monomeric and polymeric Gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20, 637-649
  40. Stenbak, C. R., Ryu, J. H., Leulier, F., Pili-Floury, S., Parquet, C., Herve, M., Chaput, C., Boneca, I. G., Lee, W. J., Lemaitre, B. and Mengin-Lecreulx, D. (2004) Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J. Immunol. 173, 7339-7348
  41. Takehana, A., Yano, T., Mita, S., Kotani, A., Oshima, Y. and Kurata, S. (2004) Peptidoglycan Recognition Protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO. J. 23, 4690-4700
  42. Mellroth, P., Karlsson, J., Hakansson, J., Schultz, N., Goldman, W. E. and Steiner, H. (2005) Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro. Proc. Natl. Acad. Sci. U.S.A. 102, 6455-6460.
  43. Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. and Deisenhofer, J. (2006) Structure of trachael cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761-1764
  44. Chang, C. I., Ihara, K., Chelliah, Y., Mengin-Lecreulx, D., Wakatsuki, S. and Deisenhofer, J. (2005) Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc. Natl. Acad. Sci. U.S.A. 102, 10279-10284
  45. Lim, J. H., Kim, M. S., Kim, H. E., Yano, T., Oshima, Y., Aggarwal, K., Goldman, W. E., Silverman, N., Kurata, S. and Oh, B. H. (2006) Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. J. Biol. Chem. 281, 8286-8295
  46. Choe, K. M., Lee, H. and Anderson, K. V. (2005) Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proc. Natl. Acad. Sci. U.S.A. 102, 1122-1126
  47. Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M. and Tschopp, J. (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-${\kappa}$B activation. Nat. Immunol. 5, 503-507
  48. Sun, X., Yin, J., Starovasnik, M. A., Fairbrother, W. J. and Dixit, V. M. (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J. Biol. Chem. 277, 9505-9511
  49. Georgel, P., Naitza, S., Kappler, C., Ferrandon, D., Zachary, D., Swimmer, C., Kopczynski, C., Duyk, G., Reichhart, J. M. and Hoffmann, J. A. (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell. 1, 503-514
  50. Lu, Y., Wu, L. P. and Anderson, K. V. (2001) The antibacterial arm of the drosophila innate immune response requires an I${\kappa}$B kinase. Genes Dev. 15, 104-110
  51. Rutschmann, S., Jung, A. C., Zhou, R., Silverman, N., Hoffmann, J. A. and Ferrandon, D. (2000) Role of Drosophila IKK gamma in a toll-independent antibacterial immune response. Nat. Immunol. 1, 342-347
  52. Silverman, N., Zhou, R., Erlich, R. L., Hunter, M., Bernstein, E., Schneider, D. and Maniatis, T. (2003) Immune activation of NF-${\kappa}$B and JNK requires Drosophila TAK1. J. Biol. Chem. 278, 48928-48934
  53. Silverman, N., Zhou, R., Stöven, S., Pandey, N., Hultmark, D. and Maniatis, T. (2000) A Drosophila I${\kappa}B$ kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461-2471
  54. Vidal, S., Khush, R. S., Leulier, F., Tzou, P., Nakamura, M. and Lemaitre, B. (2001) Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-${\kappa}$B-dependent innate immune responses. Genes Dev. 15, 1900-1912
  55. Zhou, R., Silverman, N., Hong, M., Liao, D. S., Chung, Y., Chen, Z. J. and Maniatis, T. (2005) The role of ubiquitnation in Drosophila innate immunity. J. Biol. Chem. 280, 34048-34055
  56. Pineda, G., Ea, C. K. and Chen, Z. J. (2007) Ubiquitination and TRAF signaling. Adv. Exp. Med. Biol. 597, 80-92
  57. Wang, C., Deng, L., Hong, M., Akkaraju, G. R., Inoue, J. and Chen, Z. J. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-351
  58. Huh, J. R., Foe, I., Muro, I., Chen, C. H., Seol, J. H., Yoo, S. J., Guo, M., Park, J. M. and Hay, B. A. (2007) The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J. Biol. Chem. 282, 2056-2068
  59. Gesellchen, V., Kuttenkeuler, D., Steckel, M., Pelte, N. and Boutros, M. (2005) An RNA interference screen identifies Inhibitor of Apoptosis Protein 2 as a regulator of innate immune signalling in Drosophila. EMBO. Rep. 6, 979-984
  60. Kleino, A., Valanne, S., Ulvila, J., Kallio, J., Myllymaki, H., Enwald, H., Stoven, S., Poidevin, M., Ueda, R., Hultmark, D., Lemaitre, B. and Ramet, M. (2005) Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO. J. 24, 3423-3434
  61. Leulier, F., Lhocine, N., Lemaitre, B. and Meier, P. (2006) The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol. Cell. Biol. 26, 7821-7831
  62. Valanne, S., Kleino, A., Myllymaki, H., Vuoristo, J. and Ramet, M. (2007) Iap2 is required for a sustained response in the Drosophila Imd pathway. Dev. Comp. Immunol. 31, 991-1001
  63. Geuking, P., Narasimamurthy, R. and Basler, K. (2005) A genetic screen targeting the tumor necrosis factor/Eiger signaling pathway: identification of Drosophila TAB2 as a functionally conserved component. Genetics 171, 1683-1694
  64. Zhuang, Z. H., Sun, L., Kong, L., Hu, J. H., Yu, M. C., Reinach, P., Zang, J. W. and Ge, B. X. (2006) Drosophila TAB2 is required for the immune activation of JNK and NF-${\kappa}$B. Cell. Signal. 18, 964-970
  65. Kanayama, A., Seth, R. B., Sun, L., Ea, C. K., Hong, M., Shaito, A., Chiu, Y. H., Deng, L. and Chen, Z. J. (2004) TAB2 and TAB3 activate the NF-${\kappa}$B pathway through binding to polyubiquitin chains. Mol. Cell. 15, 535-548
  66. Sun, L., Deng, L., Ea, C. K., Xia, Z. P. and Chen, Z. J. (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell. 14, 289-301
  67. Chen, W., White, M. A. and Cobb, M. H. (2002) Stimulusspecific requirements for MAP3 kinases in activating the JNK pathway. J. Biol. Chem. 277, 49105-49110
  68. Holland, P. M., Suzanne, M., Campbell, J. S., Noselli, S. and Cooper, J. A. (1997) MKK7 is a stress-activated mitogen-activated protein kinase kinase functionally related to hemipterous. J. Biol. Chem. 272, 24994-24998
  69. Sluss, H. K., Han, Z., Barrett, T., Davis, R. J. and Ip, Y. T. (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 10, 2745-2758
  70. Boutros, M., Agaisse, H. and Perrimon, N. (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell. 3, 711-722
  71. Kim, L. K., Choi, U. Y., Cho, H. S., Lee, J. S., Lee, W. B., Kim, J., Jeong, K., Shim, J., Kim-Ha, J. and Kim, Y. J. (2007) Down-regulation of NF-${\kappa}$B target genes by the AP-1 and STAT complex during the innate immune response in Drosophila. PLoS Biology 5, e238
  72. Kim, T., Yoon, J., Cho, H., Lee, W. B., Kim, J., Song, Y. H., Kim, S. N., Yoon, J. H., Kim-Ha, J. and Kim, Y. J. (2005) Downregulation of lipopolysaccharide response in Drosophila by negative crosstalk between the AP1 and NF-${\kappa}$B signaling modules. Nat. Immunol. 6, 211-218
  73. Kallio, J., Leinonen, A., Ulvila, J., Valanne, S., Ezekowitz, R. A. and Ramet, M. (2005) Functional analysis of immune response genes in Drosophila identifies JNK pathway as a regulator of antimicrobial peptide gene expression in S2 cells. Microbes. Infect. 7, 811-819
  74. Delaney, J. R. and Mlodzik, M. (2006) TGF-beta activated kinase-1: new insights into the diverse roles of TAK1 in development and immunity. Cell Cycle (Georgetown, Tex) 5, 2852-2855
  75. Stooven, S., Silverman, N., Junell, A., Hedengren-Olcott, M., Erturk, D., Engstrom, Y., Maniatis, T. and Hultmark, D. (2003) Caspase-mediated processing of the Drosophila NF-${\kappa}$B factor Relish. Proc. Natl. Acad. Sci. U.S.A. 100, 5991-5996.
  76. Stoven, S. ando, I., Kadalayil, L., Engstrom, Y. and Hultmark, D. (2000) Activation of the Drosophila NF-${\kappa}$B factor Relish by rapid endoproteolytic cleavage. EMBO. Rep. 1, 347-352
  77. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. and Lemaitre, B. (2000) The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO. Rep. 1, 353-358
  78. Mellroth, P., Karlsson, J. and Steiner, H. (2003) A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278, 7059-7064
  79. Royet, J. and Dziarski, R. (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nature Reviews 5, 264-277
  80. Werner, T., Borge-Renberg, K., Mellroth, P., Steiner, H. and Hultmark, D. (2003) Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J. Biol. Chem. 278, 26319-26322
  81. Garver, L. S., Wu, J. and Wu, L. P. (2006) The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 103, 660-665.
  82. Persson, C., Oldenvi, S. and Steiner, H. (2007) Peptidoglycan recognition protein LF: a negative regulator of Drosophila immunity. Insect. Biochem. Mol. Biol. 37, 1309-1316
  83. Ganguly, A., Jiang, J. and Ip, Y. T. (2005) Drosophila WntD is a target and an inhibitor of the Dorsal/Twist/Snail network in the gastrulating embryo. Development 132, 3419-3429
  84. Gordon, M. D., Dionne, M. S., Schneider, D. S. and Nusse, R. (2005) WntD is a feedback inhibitor of Dorsal/NF-${\kappa}$B in Drosophila development and immunity. Nature 437, 746-749
  85. Park, J. M., Brady, H., Ruocco, M. G., Sun, H., Williams, D., Lee, S. J., Kato, T., Jr., Richards, N., Chan, K., Mercurio, F., Karin, M. and Wasserman, S. A. (2004) Targeting of TAK1 by the NF-${\kappa}$B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev. 18, 584-594
  86. Tsuda, M., Seong, K. H. and Aigaki, T. (2006) POSH, a scaffold protein for JNK signaling, binds to ALG-2 and ALIX in Drosophila. FEBS. Lett. 580, 3296-3300
  87. Foley, E. and O'Farrell, P. H. (2004) Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS. Biology. 2, E203
  88. Chu, K., Niu, X. and Williams, L. T. (1995) A Fas-associated protein factor, FAF1, potentiates Fas-mediated apoptosis. Proc. Natl. Acad. Sci. U.S.A. 92, 11894-11898.
  89. Park, M. Y., Jang, H. D., Lee, S. Y., Lee, K. J. and Kim, E. (2004) Fas-associated factor-1 inhibits nuclear factor-${\kappa}$B (NF-${\kappa}$B) activity by interfering with nuclear translocation of the RelA (p65) subunit of NF-${\kappa}$B. J. Biol. Chem. 279, 2544-2549
  90. Ryu, S. W., Lee, S. J., Park, M. Y., Jun, J. I., Jung, Y. K. and Kim, E. (2003) Fas-associated factor 1, FAF1, is a member of Fas death-inducing signaling complex. J. Biol. Chem. 278, 24003-24010
  91. Kim, M., Lee, J. H., Lee, S. Y., Kim, E. and Chung, J. (2006) Caspar, a suppressor of antibacterial Immunity in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 103, 16358-16363.
  92. Khush, R. S., Cornwell, W. D., Uram, J. N. and Lemaitre, B. (2002) A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr. Biol. 12, 1728-1737
  93. Davis, R. J. (1999) Signal transduction by the c-Jun N-terminal kinase. Biochemical Society Symposium 64, 1-12
  94. Agaisse, H., Petersen, U. M., Boutros, M., Mathey-Prevot, B. and Perrimon, N. (2003) Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev. Cell. 5, 441-450
  95. Matova, N. and Anderson, K. V. (2006) Rel/NF-${\kappa}$B double mutants reveal that cellular immunity is central to Drosophila host defense. Proc. Natl. Acad. Sci. U.S.A. 103, 16424-16429.
  96. Cox, C. R. and Gilmore, M. S. (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75, 1565-1576
  97. Ren, C., Webster, P., Finkel, S. E. and Tower, J. (2007) Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell. Metabolism. 6, 144-152
  98. Ryu, J. H., Kim, S. H., Lee, H. Y., Bai, J. Y., Nam, Y. D., Bae, J. W., Lee, D. G., Shin, S. C., Ha, E. M. and Lee, W. J. (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777-782
  99. Lengyel, J. A. and Iwaki, D. D. (2002) It takes guts: the Drosophila hindgut as a model system for organogenesis. Dev. Biol. 243, 1-19
  100. Sodergren, E., Weinstock, G. M., Davidson, E. H., Cameron, R. A., Gibbs, R. A., Angerer, R. C., Angerer, L. M., Arnone, M. I., Burgess, D. R., Burke, R. D., Coffman, J. A., Dean, M., Elphick, M. R., Ettensohn, C. A., Foltz, K. R., Hamdoun, A., Hynes, R. O., Klein, W. H., Marzluff, W., McClay, D. R., Morris, R. L., Mushegian, A., Rast, J. P., Smith, L. C., Thorndyke, M. C., Vacquier, V. D., Wessel, G. M., Wray, G., Zhang, L., Elsik, C. G., Ermolaeva, O., Hlavina, W., Hofmann, G., Kitts, P., Landrum, M. J., Mackey, A. J., Maglott, D., Panopoulou, G., Poustka, A. J., Pruitt, K., Sapojnikov, V., Song, X., Souvorov, A., Solovyev, V., Wei, Z., Whittaker, C. A., Worley, K., Durbin, K. J., Shen, Y., Fedrigo, O., Garfield, D., Haygood, R., Primus, A., Satija, R., Severson, T., Gonzalez-Garay, M. L., Jackson, A. R., Milosavljevic, A., Tong, M., Killian, C. E., Livingston, B. T., Wilt, F. H., Adams, N., Belle, R., Carbonneau, S., Cheung, R., Cormier, P., Cosson, B., Croce, J., Fernandez- Guerra, A., Geneviere, A. M., Goel, M., Kelkar, H., Morales, J., Mulner-Lorillon, O., Robertson, A. J., Goldstone, J. V., Cole, B., Epel, D., Gold, B., Hahn, M. E., Howard-Ashby, M., Scally, M., Stegeman, J. J., Allgood, E. L., Cool, J., Judkins, K. M., McCafferty, S. S., Musante, A. M., Obar, R. A., Rawson, A. P., Rossetti, B. J., Gibbons, I. R., Hoffman, M. P., Leone, A., Istrail, S., Materna, S. C., Samanta, M. P., Stolc, V., Tongprasit, W., Tu, Q., Bergeron, K. F., Brandhorst, B. P., Whittle, J., Berney, K., Bottjer, D. J., Calestani, C., Peterson, K., Chow, E., Yuan, Q. A., Elhaik, E., Graur, D., Reese, J. T., Bosdet, I., Heesun, S., Marra, M. A., Schein, J. anderson, M. K., Brockton, V., Buckley, K. M., Cohen, A. H., Fugmann, S. D., Hibino, T., Loza-Coll, M., Majeske, A. J., Messier, C., Nair, S. V., Pancer, Z., Terwilliger, D. P., Agca, C., Arboleda, E., Chen, N., Churcher, A. M., Hallbook, F., Humphrey, G. W., Idris, M. M., Kiyama, T., Liang, S., Mellott, D., Mu, X., Murray, G., Olinski, R. P., Raible, F., Rowe, M., Taylor, J. S., Tessmar-Raible, K., Wang, D., Wilson, K. H., Yaguchi, S., Gaasterland, T., Galindo, B. E., Gunaratne, H. J., Juliano, C., Kinukawa, M., Moy, G. W., Neill, A. T., Nomura, M., Raisch, M., Reade, A., Roux, M. M., Song, J. L., Su, Y. H., Townley, I. K., Voronina, E., Wong, J. L., Amore, G., Branno, M., Brown, E. R., Cavalieri, V., Duboc, V., Duloquin, L., Flytzanis, C., Gache, C., Lapraz, F., Lepage, T., Locascio, A., Martinez, P., Matassi, G., Matranga, V., Range, R., Rizzo, F., Rottinger, E., Beane, W., Bradham, C., Byrum, C., Glenn, T., Hussain, S., Manning, G., Miranda, E., Thomason, R., Walton, K., Wikramanayke, A., Wu, S. Y., Xu, R., Brown, C. T., Chen, L., Gray, R. F., Lee, P. Y., Nam, J., Oliveri, P., Smith, J., Muzny, D., Bell, S., Chacko, J., Cree, A., Curry, S., Davis, C., Dinh, H., Dugan-Rocha, S., Fowler, J., Gill, R., Hamilton, C., Hernandez, J., Hines, S., Hume, J., Jackson, L., Jolivet, A., Kovar, C., Lee, S., Lewis, L., Miner, G., Morgan, M., Nazareth, L. V., Okwuonu, G., Parker, D., Pu, L. L., Thorn, R. and Wright, R. (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314, 941-952
  101. Flatt, T., Tu, M. P. and Tatar, M. (2005) Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27, 999-1010
  102. Zerofsky, M., Harel, E., Silverman, N. and Tatar, M. (2005) Aging of the innate immune response in Drosophila melanogaster. Aging Cell 4, 103-108

Cited by

  1. Reciprocal Analysis of Francisella novicida Infections of a Drosophila melanogaster Model Reveal Host-Pathogen Conflicts Mediated by Reactive Oxygen and imd-Regulated Innate Immune Response vol.6, pp.8, 2010,
  2. Comparative RNA-sequencing analysis of mthl1 functions and signal transductions in Tribolium castaneum vol.547, pp.2, 2014,
  3. Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction vol.17, pp.5-6, 2016,
  4. Immune-Related Transcriptome of Coptotermes formosanus Shiraki Workers: The Defense Mechanism vol.8, pp.7, 2013,
  5. Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections vol.6, pp.3, 2011,
  6. Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm (Bombyx mori) vol.38, pp.5, 2010,
  7. Immunity Without Antibodies… vol.-1, pp.-1, 2009,
  8. Gut-microbiota interactions in non-mammals: What can we learn from Drosophila? vol.24, pp.1, 2012,
  9. Signaling pathways regulating innate immune responses in shrimp vol.34, pp.4, 2013,
  10. Post-transcriptional Regulation of Genes Encoding Anti-microbial Peptides inDrosophila vol.284, pp.13, 2009,
  11. Functional genomics of the evolution of increased resistance to parasitism in Drosophila vol.20, pp.5, 2011,
  12. Insect cytokine paralytic peptide activates innate immunity via nitric oxide production in the silkworm Bombyx mori vol.39, pp.3, 2013,
  13. RNAi knock-down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi vol.34, pp.1, 2010,
  14. Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing vol.16, pp.1, 2015,
  15. Genome-Wide Analysis of Host Responses to Four Different Types of Microorganisms inBombyx Mori(Lepidoptera: Bombycidae) vol.16, pp.1, 2016,
  16. Deletion of Shp2 in bronchial epithelial cells impairs IL-25 production in vitro, but has minor influence on asthmatic inflammation in vivo vol.12, pp.5, 2017,
  17. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense vol.7, pp.1, 2017,
  18. Heterodimers of NF- B transcription factors DIF and Relish regulate antimicrobial peptide genes in Drosophila vol.107, pp.33, 2010,
  19. A new role for T cells in dampening innate inflammatory responses vol.53, pp.2, 2010,
  20. Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae): a review vol.105, pp.5, 2010,
  21. Transcriptomic profiling of Microplitis demolitor bracovirus reveals host, tissue and stage-specific patterns of activity vol.92, pp.9, 2011,
  22. Some latest achievements in immunology research vol.56, pp.35, 2011,
  23. A Fas associated factor negatively regulates anti-bacterial immunity by promoting Relish degradation in Bombyx mori vol.63, 2015,
  24. Patterns of Pathogenesis: Discrimination of Pathogenic and Nonpathogenic Microbes by the Innate Immune System vol.6, pp.1, 2009,
  25. DrosophilaRas/MAPK signalling regulates innate immune responses in immune and intestinal stem cells vol.30, pp.6, 2011,
  26. The initial analysis of a serine proteinase gene (AccSp10) from Apis cerana cerana: possible involvement in pupal development, innate immunity and abiotic stress responses 2017,
  27. miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila vol.12, pp.11, 2016,
  28. dRYBP Contributes to the Negative Regulation of the Drosophila Imd Pathway vol.8, pp.4, 2013,
  29. Wolbachia Infection Decreased the Resistance of Drosophila to Lead vol.7, pp.3, 2012,
  30. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System vol.7, 2016,
  31. Innate Immune Signaling Pathways in Animals: Beyond Reductionism vol.28, pp.3-4, 2009,
  32. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori vol.65, pp.2, 2015,
  33. Mosquito immune defenses against Plasmodium infection vol.34, pp.4, 2010,
  34. The Entomopathogenic Fungi Isaria fumosorosea Plays a Vital Role in Suppressing the Immune System of Plutella xylostella: RNA-Seq and DGE Analysis of Immunity-Related Genes vol.8, 2017,
  35. Gene discovery and differential expression analysis of humoral immune response elements in female Culicoides sonorensis (Diptera: Ceratopogonidae) vol.7, pp.1, 2014,
  36. Drosophila Intestinal Response to Bacterial Infection: Activation of Host Defense and Stem Cell Proliferation vol.5, pp.2, 2009,
  37. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi vol.34, pp.10, 2010,
  38. Temporal waves of coherent gene expression during Drosophila embryogenesis vol.26, pp.21, 2010,
  39. Evolutionary rate patterns of genes involved in the Drosophila Toll and Imd signaling pathway vol.13, pp.1, 2013,
  40. Insect Cytokine Paralytic Peptide (PP) Induces Cellular and Humoral Immune Responses in the SilkwormBombyx mori vol.285, pp.37, 2010,
  41. A Shared Role for RBF1 and dCAP-D3 in the Regulation of Transcription with Consequences for Innate Immunity vol.8, pp.4, 2012,
  42. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization vol.114, pp.3, 2013,
  43. The Shrimp NF-κB Pathway Is Activated by White Spot Syndrome Virus (WSSV) 449 to Facilitate the Expression of WSSV069 (ie1), WSSV303 and WSSV371 vol.6, pp.9, 2011,
  44. A Toll-Spätzle pathway in the tobacco hornworm, Manduca sexta vol.42, pp.7, 2012,
  45. Switching between humoral and cellular immune responses in Drosophila is guided by the cytokine GBP vol.5, 2014,
  46. Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann) vol.128, 2016,
  47. Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila vol.5, pp.12, 2009,
  48. Epithelial homeostasis and the underlying molecular mechanisms in the gut of the insect model Drosophila melanogaster vol.68, pp.22, 2011,
  49. Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome vol.50, pp.3, 2016,
  50. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania vol.9, pp.1, 2016,
  51. Modulation of epithelial innate immunity by autocrine production of nitric oxide vol.162, pp.1, 2009,
  52. Molecular cloning and characterization of a short peptidoglycan recognition protein (PGRP-S) with antibacterial activity from the bumblebee Bombus ignitus vol.34, pp.9, 2010,
  53. Toll pathway modulates TNF-induced JNK-dependent cell death inDrosophila vol.5, pp.7, 2015,
  54. Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects vol.55, pp.5, 2015,
  55. Caudal is a negative regulator of the Anopheles IMD Pathway that controls resistance to Plasmodium falciparum infection vol.39, pp.4, 2013,
  56. Differential modulation of the cellular and humoral immune responses in Drosophila is mediated by the endosomal ARF1-Asrij axis vol.7, pp.1, 2017,
  57. Bacteria sensing mechanisms in Drosophila gut: Local and systemic consequences vol.64, 2016,
  58. Do adaptive immune cells suppress or activate innate immunity? vol.30, pp.1, 2009,
  59. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: Key regulators of innate immunity vol.124, pp.2, 2009,
  60. From pathogens to microbiota: How Drosophila intestinal stem cells react to gut microbes vol.64, 2016,
  61. Bacterial challenge initiates endosome-lysosome response inDrosophilaimmune tissues vol.2, pp.1, 2013,
  62. On-bead tryptic proteolysis: An attractive procedure for LC-MS/MS analysis of the Drosophila caspase 8 protein complex during immune response against bacteria vol.75, pp.15, 2012,
  63. Morphological and Molecular Characterization of Adult Midgut Compartmentalization in Drosophila vol.3, pp.5, 2013,
  64. Identification of Immunity-Related Genes in Ostrinia furnacalis against Entomopathogenic Fungi by RNA-Seq Analysis vol.9, pp.1, 2014,
  65. Comparative genomics allows the discovery of cis-regulatory elements in mosquitoes vol.106, pp.9, 2009,
  66. Comparison of the humoral and cellular immune responses between body and head lice following bacterial challenge vol.41, pp.5, 2011,
  67. Molecular Mechanisms of Aging and Immune System Regulation in Drosophila vol.13, pp.12, 2012,
  68. Gut homeostasis in a microbial world: insights from Drosophila melanogaster vol.11, pp.9, 2013,
  69. Functional Analysis of PGRP-LA in Drosophila Immunity vol.8, pp.7, 2013,
  70. Insect immunology and hematopoiesis vol.58, 2016,
  71. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application vol.37, pp.2, 2012,
  72. Modulation of the transcriptional response of innate immune and RNAi genes upon exposure to dsRNA and LPS in silkmoth-derived Bm5 cells overexpressing BmToll9-1 receptor vol.66, 2014,
  73. Drosophila miR-964 modulates Toll signaling pathway in response to bacterial infection vol.77, 2017,
  74. unpaired (upd)-3 expression and other immune-related functions are stimulated by interleukin-8 in Drosophila melanogaster SL2 cell line vol.44, pp.2, 2008,
  75. Mosquito Immunity against Arboviruses vol.6, pp.11, 2014,
  76. Drosophilablood cells and their role in immune responses vol.282, pp.8, 2015,
  77. Effect of Varroa destructor, Wounding and Varroa Homogenate on Gene Expression in Brood and Adult Honey Bees vol.12, pp.1, 2017,
  78. Heixuedian (heix), a potential melanotic tumor suppressor gene, exhibits specific spatial and temporal expression pattern during drosophila hematopoiesis vol.398, pp.2, 2015,
  79. Survival and immune-related gene expression in Litopenaeus vannamei co-infected with WSSV and Vibrio parahaemolyticus vol.464, 2016,
  80. Misexpression screen delineates novel genes controlling Drosophila lifespan vol.133, pp.5, 2012,
  81. Fas-associated factor 1plays a negative regulatory role in the antibacterial immunity ofLocusta migratoria vol.22, pp.4, 2013,
  82. Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori vol.7, pp.1, 2017,
  83. The N-terminal half of the Drosophila Rel/NF-κB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes vol.33, pp.5, 2009,
  84. Antimicrobial peptides: therapeutic potentials vol.12, pp.12, 2014,
  85. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War vol.9, pp.3, 2018,
  86. Unraveling the Molecular Mechanism of Immunosenescence in Drosophila vol.19, pp.9, 2018,
  87. Role of Glial Immunity in Lifespan Determination: A Drosophila Perspective vol.9, pp.1664-3224, 2018,
  88. RIOK-1 Is a Suppressor of the p38 MAPK Innate Immune Pathway in Caenorhabditis elegans vol.9, pp.1664-3224, 2018,
  89. vol.197, pp.2, 2014,