DOI QR코드

DOI QR Code

ESTIMATION OF SPICULE MAGNETIC FIELD USING OBSERVED MHD WAVES BY THE HINODE SOT

  • Published : 2008.12.31

Abstract

Using the MHD coronal seismology technique, we estimated the magnetic field for three spicules observed in 2008 June. For this study, we used the high resolution Ca II H line ($3968.5\;{\AA}$) images observed by the Hinode SOT and considered a vertical thin flux tube as a spicule model. To our knowledge, this is the first attempt to estimate the spicule magnetic field using the Hinode observation. From the observed oscillation properties, we determined the periods, amplitudes, minimum wavelengths, and wave speeds. We interpreted the observed oscillations as MHD kink waves propagating through a vertical thin flux tube embedded in a uniform field environment. Then we estimated spicule magnetic field assuming spicule densities. Major results from this study are as follows : (1) we observed three oscillating spicules having durations of 5-7 minutes, oscillating periods of 2-3 minutes, and transverse displacements of 700-1000 km. (2) The estimated magnetic field in spicules is about 10-18 G for lower density limit and about 43-76 G for upper density limit. (3) In this analysis, we can estimate the minimum wavelength of the oscillations, such as 60000 km, 56000 km, and 45000 km. This may be due to the much longer wavelength comparing with the height of spicules. (4) In the first event occurred on 2008 June 03, the oscillation existed during limited time (about 250 s). This means that the oscillation may be triggered by an impulsive mechanism (like low atmospheric reconnection), not continuous. Being compared with the ground-based observations of spicule oscillations, our observation indicates quite different one, i.e., more than one order longer in wavelength, a factor of 3-4 larger in wave speed, and 2-3 times longer in period.

References

  1. Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D., 1999, Coronal Loop Oscillations Observed with the Transition Region and Coronal Explorer, ApJ, 520, 880 https://doi.org/10.1086/307502
  2. Beckers, J. M., 1968, Solar Spicules (Invited Review Paper), Sol. Phys., 3, 367
  3. Cirtain, J. W., et al., 2007, Evidence for Alfven Waves in Solar X-ray Jets, Science, 318, 1580 https://doi.org/10.1126/science.1147050
  4. De Moortel, I., Ireland, J., & Walsh, R. W., 2000, Observation of oscillations in coronal loops , A&A, 335, L23
  5. De Pontieu, B., et al., 2007, Chromospheric Alfvenic Waves Strong Enough to Power the Solar Wind, Science, 318, 1574 https://doi.org/10.1126/science.1151747
  6. De Pontieu, B., Erdelyi, R., & de Wijn, A. G., 2003, Intensity Oscillations in the Upper Transition Region above Active Region Plage, ApJ, 595, L63 https://doi.org/10.1086/378843
  7. Deforest, C. E. & Gurman, J. B., 1998, Observation of Quasi-periodic Compressive Waves in Solar Polar Plumes, ApJ, 501, L217 https://doi.org/10.1086/311460
  8. Edwin, P. M., & Roberts, B., 1983, Wave propagation in a magnetic cylinder, Sol. Phys., 88, 179
  9. Erdelyi, R., Malins, C., Toth, G., & de Pontieu, B., 2007, Leakage of photospheric acoustic waves into non-magnetic solar atmosphere, A&A, 467, 1299 https://doi.org/10.1051/0004-6361:20066857
  10. Hasan, S. S. & Kalkofen, W., 1999, Excitation of Oscillations in Photospheric Flux Tubes through Buffeting by External Granules, ApJ, 519, 899 https://doi.org/10.1086/307404
  11. Hollweg, J. V., 1981, Alfven waves in the solar atmosphere. II - Open and closed magnetic flux tubes, Sol. Phys., 70, 25 https://doi.org/10.1007/BF00154391
  12. Kosugi, T. et al., 2007, The Hinode (Solar-B) Mission: An Overview, Sol. Phys., 243, 3 https://doi.org/10.1007/s11207-007-9014-6
  13. Kukhianidze, V., Zaqarashvili, T. V.;, & Khutsishvili, E. 2006, Observation of kink waves in solar spicules, A&A, 449, L35 https://doi.org/10.1051/0004-6361:200600018
  14. Kulidzanishvili, V. I. & Zhugzhda, Iu. D., 1983, On the problem of spicular oscillations, Sol. Phys., 88, 3
  15. Nakariakov, V. M. & Ofman, L., 2001, Determination of the coronal magnetic field by coronal loop oscillations, A&A, 372, L53 https://doi.org/10.1051/0004-6361:20010607
  16. Nakariakov, V. M., Ofman, L., Deluca, E. E., Roberts, B., & Davila, J. M., 1999, TRACE observation of damped coronal loop oscillations: Implications for coronal heating, Science, 285, 862 https://doi.org/10.1126/science.285.5429.862
  17. Nikolsky, G. M. & Platova, A. G., 1971, Motions of $H{\alpha}-spicules$ along the solar limb, Sol. Phys., 18, 403 https://doi.org/10.1007/BF00149062
  18. Ofman, L., Nakariakov, V. M., & Deforest, C. E., 1999, Slow Magnetosonic Waves in Coronal Plumes, ApJ, 514, 441 https://doi.org/10.1086/306944
  19. Okamoto, T. J., et al., 2007, Coronal Transverse Magnetohydrodynamic Waves in a Solar Prominence, Science, 318, 1577 https://doi.org/10.1126/science.1145447
  20. Robbrecht, E., Verwichte, E., Berghmans, D., Hochedez, J. F., Poedts, S., & Nakariakov, V. M., 2001, Slow magnetoacoustic waves in coronal loops: EIT and TRACE, A&A, 370, 591 https://doi.org/10.1051/0004-6361:20010226
  21. Roberts, B., 1979, Spicules - The resonant response to granular buffeting, Sol. Phys., 61, 23 https://doi.org/10.1007/BF00155443
  22. Roberts, B., 2004, MHD Waves in the Solar Atmosphere, In Proceedings of 'SOHO 13 - Waves, Oscillations and Small-Scale Transient Events in the Solar Atmosphere: A Joint View from SOHO and TRACE', Palma de Mallorca, Balearic Islands, Spain , ESA SP-547, 1
  23. Shimizu, T. et al,. 2008, Image Stabilization System for Hinode (Solar-B) Solar Optical Telescope, Sol. Phys., 249, 221 https://doi.org/10.1007/s11207-007-9053-z
  24. Singh, K. A. P. & Dwivedi, B. N., 2007, Estimation of spicule magnetic field using observed kink waves, New Astronomy, 12, 479 https://doi.org/10.1016/j.newast.2007.02.001
  25. Spruit, H. C., 1981, Motion of magnetic flux tubes in the solar convection zone and chromosphere, A&A, 98, 155
  26. Sterling, Alphonse C., 2000, Solar Spicules: A Review of Recent Models and Targets for Future Observations - (Invited Review), Sol. Phys., 196, 79 https://doi.org/10.1023/A:1005213923962
  27. Suematsu, Y., 1998, Solar Spicules: A brief review of recent high-resolution observations, In Proceedings of an International meeting: Solar Jets and Coronal Plumes, Guadeloupe, France, ESA SP-421, p.19
  28. Suematsu, Y., et al., 2008, The Solar Optical Telescope of Solar-B (Hinode): The Optical Telescope Assembly, Sol. Phys., 249, 197
  29. Tsuneta, S., et al., 2008, The Solar Optical Telescope for the Hinode Mission: An Overview, Sol. Phys., 249, 167 https://doi.org/10.1007/s11207-008-9174-z
  30. Xia, L. D., Popescu, M. D., Doyle, J. G., & Giannikakis, J., 2005, Time series study of EUV spicules observed by SUMER/SoHO, A&A, 438, 1115 https://doi.org/10.1051/0004-6361:20042579
  31. Zaqarashvili, T. V., Khutsishvili, E., Kukhianidze, V., & Ramishvili, G., 2007, Doppler-shift oscillations in solar spicules, A&A, 474, 627 https://doi.org/10.1051/0004-6361:20077661

Cited by

  1. PERSISTENT DOPPLER SHIFT OSCILLATIONS OBSERVED WITHHINODE/EIS IN THE SOLAR CORONA: SPECTROSCOPIC SIGNATURES OF ALFVÉNIC WAVES AND RECURRING UPFLOWS vol.759, pp.2, 2012, https://doi.org/10.1088/0004-637X/759/2/144
  2. Solar Fine-Scale Structures. I. Spicules and Other Small-Scale, Jet-Like Events at the Chromospheric Level: Observations and Physical Parameters vol.169, pp.1-4, 2012, https://doi.org/10.1007/s11214-012-9920-2
  3. The possibility of Kelvin-Helmholtz instability in solar spicules vol.357, pp.1, 2015, https://doi.org/10.1007/s10509-015-2277-8
  4. The period ratio P 1 / P 2 $P_{1}/P_{2}$ of torsional Alfvén waves with steady flows in spicules vol.361, pp.4, 2016, https://doi.org/10.1007/s10509-016-2716-1
  5. Multiwavelength Studies of MHD Waves in the Solar Chromosphere vol.190, pp.1-4, 2015, https://doi.org/10.1007/s11214-015-0141-3
  6. Quasi-periodic variations in Doppler velocities of Hα spicules vol.354, pp.2, 2014, https://doi.org/10.1007/s10509-014-2100-y
  7. Observation of standing kink waves in solar spicules vol.337, pp.1, 2012, https://doi.org/10.1007/s10509-011-0811-x
  8. TRANSVERSE OSCILLATIONS IN CHROMOSPHERIC MOTTLES vol.750, pp.1, 2012, https://doi.org/10.1088/0004-637X/750/1/51
  9. HEIGHT VARIATION OF THE VECTOR MAGNETIC FIELD IN SOLAR SPICULES vol.803, pp.2, 2015, https://doi.org/10.1088/2041-8205/803/2/L18
  10. Seismological Determination of the Alfvén Speed and Plasma Beta in Solar Photospheric Bright Points vol.871, pp.1, 2019, https://doi.org/10.3847/2041-8213/aafe0a