DOI QR코드

DOI QR Code

Self-assembly of Dumbbell-shaped Rod Amphiphiles Based on Dodeca-p-phenylene

  • Huang, Zhegang (Center for Supramolecular Nano-Assembly and Department of Chemistry, Yonsei University) ;
  • Liu, Libin (Center for Supramolecular Nano-Assembly and Department of Chemistry, Yonsei University) ;
  • Lee, Eun-Ji (Center for Supramolecular Nano-Assembly and Department of Chemistry, Yonsei University) ;
  • Lee, Myong-Soo (Center for Supramolecular Nano-Assembly and Department of Chemistry, Yonsei University)
  • Published : 2008.08.20

Abstract

Dumbbell-shaped aromatic amphiphilic molecules consisting of a dodeca-p-phenylene as a rigid segment and oligoether dendrons as a flexible chains were synthesized, characterized, and their aggregation behavior was investigated in the bulk and at the air-water interface. In contrast to the molecule 2 which shows a nematic liquid crystalline state, molecule 1 based on shorter dendritic chains was observed to self-assemble into a 3-D primitive orthorhombic supercrystal. And molecule 1 at the air-water interface was observed to reorganize from circular plates to ring structures by lateral compressions.

References

  1. Cormelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001, 101, 4039 https://doi.org/10.1021/cr990126i
  2. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. H. Chem. Rev. 2005, 105, 1491 https://doi.org/10.1021/cr030070z
  3. Motoyanagi, J.; Fukushima, T.; Ishii, N.; Aida, T. J. Am. Chem. Soc. 2006, 128, 4220 https://doi.org/10.1021/ja060593z
  4. Ajayaghosh, A.; Vijayakumar, C.; Varghese, R.; George, S. J. Angew. Chem. Int. Ed. 2006, 45, 456 https://doi.org/10.1002/anie.200503258
  5. Chen, B.; Baumeister, U.; Pelzl, G.; Das, M. K.; Zeng, X.; Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2005, 127, 16578 https://doi.org/10.1021/ja0535357
  6. Percec, V.; Dulcey, A.; Balagurusamy, V. S. K.; Miura, Y.;Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Duan, H.; Magonov, S. N.; Vinogradov, S. A. Nature 2004, 430, 764 https://doi.org/10.1038/nature02770
  7. Kawano, S.-I.; Fujita, N.; Shinkai, S. J. Am. Chem. Soc. 2004, 126, 8592 https://doi.org/10.1021/ja048943+
  8. Kuroiwa, K.; Shibata, T.; Takada, A.; Nemoto, N.; Kimizuka, N. J. Am. Chem. Soc. 2004, 126, 2016 https://doi.org/10.1021/ja037847q
  9. Antonietti, M.; Förster, S. Adv. Mater. 2003, 15, 1323 https://doi.org/10.1002/adma.200300010
  10. Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. Rev. 2001, 101, 3869 https://doi.org/10.1021/cr0001131
  11. Yoo, Y.-S.; Lee, M. J. Mater. Chem. 2005, 15, 419 https://doi.org/10.1039/b413205j
  12. Ryu, J.- H.; Cho, B.-K.; Lee, M. Bull. Korean Chem. Soc. 2006, 27, 1270 https://doi.org/10.5012/bkcs.2006.27.9.1270
  13. Park, S.; Lim, J.-H.; Chung, S.-W.; Mirkin, C. A. Science 2004, 303, 348 https://doi.org/10.1126/science.1093276
  14. Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Science 1997, 276, 384 https://doi.org/10.1126/science.276.5311.384
  15. Schenning, A. P. H. J.; Elissen-Roman, C.; Weener, J.; Baars, M. W. P. L.; Van der Gaast, S. J.; Meijer, E. W. J. Am. Chem. Soc. 1998, 120, 8199 https://doi.org/10.1021/ja9736774
  16. Tsukruk, V. V. Adv. Mater. 1998, 10, 253 https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<253::AID-ADMA253>3.0.CO;2-E
  17. Yoo, Y.-S.; Choi, J.-H.; Song, J.-H.; Oh, N.-K.; Zin, W.-C.; Park, S.; Chang, T.; Lee, M. J. Am. Chem. Soc. 2004, 126, 6294 https://doi.org/10.1021/ja048856h
  18. Holzmueller, J.; Genson, K. L.; Park, Y.; Yoo, Y.-S.; Park, M.- H.; Lee, M.; Tsukruk, V. V. Langmuir 2005, 21, 6392 https://doi.org/10.1021/la0504107
  19. Mori, A.; Yokoo, M.; Hashimoto, M.; Ujiie, S.; Diele, S.; Baumeister, U.; Tschierske, C. J. Am. Chem. Soc. 2003, 125, 6620 https://doi.org/10.1021/ja034569m
  20. Xu, Y.; Leng, S.; Xue, C.; Sun, R.; Pan, J.; Ford, J. Jin, S. Angew. Chem. Int. Ed. 2007, 46, 3896 https://doi.org/10.1002/anie.200604607
  21. Huang, Z.; Ryu, J.; Lee, E.; Lee, M. Chem. Mater. 2007, 19, 6569 https://doi.org/10.1021/cm7028189
  22. Bae, J.; Choi, J.-H.; Yoo, Y.-S.; Oh, N.-K.; Kim, B.-S.; Lee, M. J. Am. Chem. Soc. 2005, 127, 9668 https://doi.org/10.1021/ja051961m
  23. Ulman, A. An Introduction to Ultrathin Organic Films; Academic Press: San Diego, CA, 1991
  24. Kim, H.-J.; Zim, W.-C.; Lee, M. J. Am. Chem. Soc. 2004, 126, 7009 https://doi.org/10.1021/ja049799v
  25. Lee, M.; Cho, B.-K.; Jang, Y.-G.; Zin, W.-C. J. Am. Chem. Soc. 2000, 122, 7449 https://doi.org/10.1021/ja000966a
  26. Lee, M.; Jeong, Y.-S.; Cho, B.-K.; Oh, N.-K.; Zin, W.-C. Chem.-Eur. J. 2002, 8, 876 https://doi.org/10.1002/1521-3765(20020215)8:4<876::AID-CHEM876>3.0.CO;2-M
  27. Tsukruk, V. V.; Genson, K.; Peleshanko, S.; Markutsya, S.; Lee, M.; Yoo, Y.-S. Langmuir 2003, 19, 495 https://doi.org/10.1021/la0257485
  28. Samori, P.; Francke, V.; Mangel, T.; Müllen, K.; Rabe, J. P. Opt. Mater. 1998, 9, 390 https://doi.org/10.1016/S0925-3467(97)00061-X
  29. Xu, Z.; Holland, N. B.; Marchant, R. E. Langmuir 2001, 17, 377 https://doi.org/10.1021/la0006770
  30. Jayaraman, M.; Frechet, J. M. J. J. Am. Chem. Soc. 1998, 120, 12996 https://doi.org/10.1021/ja983229b
  31. Ajayaghosh, A.; George, S. J. J. Am. Chem. Soc. 2001, 123, 5148 https://doi.org/10.1021/ja005933+
  32. Fu, H.-B.; Yao, J.-N. J. Am. Chem. Soc. 2001, 123, 1434 https://doi.org/10.1021/ja0026298
  33. Zheng, J.; Swager, T. M. Macromolecules 2006, 39, 6781 https://doi.org/10.1021/ma060420u