Comparative Analysis of Dissimilatory Sulfite Reductase (dsr) Gene from Sediment of Lake Sihwa, Korea and Lake Aha, China

한국 시화호와 중국 Aha호 저질토에 분포하는 이화성 아황산염 환원효소 유전자의 비교 분석

  • Kim, In-Seon (Department of Environmental Science, Kangwon National University) ;
  • Kim, Ok-Sun (School of Biological Sciences, Seoul National University) ;
  • Jeon, Sun-Ok (Department of Environmental Science, Kangwon National University) ;
  • Witzel, Karl-Paul (Max Planck Institute of Evolutionary Biology) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kangwon National University)
  • 김인선 (강원대학교 환경과학과) ;
  • 김옥선 (서울대학교 생명과학부) ;
  • 전선옥 (강원대학교 환경과학과) ;
  • ;
  • 안태석 (강원대학교 환경과학과)
  • Published : 2008.06.30


The diversity of sulfate reducing bacteria was investigated in different depths of sediments in Lake Sihwa, Korea and Lake Aha, China by PCR amplification, denaturing gradient gel electrophoresis (DGGE) and clone libraries targeting dissimilatory sulfite redectase (dsr) gene. In the analysis of DGGE band patterns, the community compositions of dsr gene in the sediments of both lakes were significantly different whereas bands in all depths of each environment revealed similar patterns. Bands from Lake Sihwa were produced much more than those from Lake Aha, demonstrating a higher diversity of dsr gene in Lake Sihwa. Total 68 clones containing dsr gene were obtained to analyze their sequences. Sequences from the sediment of Lake Sihwa were affiliated to Deltaproteobacteria, the Gram-positive thermophilic sulfate reducers belonging to the genus Desulforomaculum and archaeal thermophilic SRB belonging to the genus Archaeoglobus, whereas sequences from the sediments of Lake Aha were related to genus Desulfotomaculum. Clones retrieved from sediment of Lake Sihwa revealed a higher numbers than those of Lake Aha, demonstrating a higher diversity of dsr gene in Lake Sihwa. Most of clones (59%) were distantly related to the known cultivated SRB with $60\sim65%$ of similarity, which were clustered only the sequences from the environments showed less than 90% similarity. These habitat specific sequences suggested that the clustered dsr sequences represent species or groups of species that were indigenous to these environments. This study showed that these lakes have a specific bacterial communities having dsr gene distinct from those in other environments such as soil and marine ecosystems around the world.


  1. Aron, L.M., E.B. Pamela, and T.H. Alan. 1989. Acid stress and aquatic microbial interactions, pp. 1-19. In S.R. Salem and P.D. Rao (eds.), CRC Press. Inc., Florida, USA
  2. Barton, L.L. and F.A. Tomei. 1995. Characteristics and activities of sulfate-reducing bacteria. pp. 1-32. In L.L. Barton (ed.), Sulfate-reducing bacteria, Vol. 8, Peplum Press, New York, USA
  3. Castro, H.F., N.H. Williams, and A. Ogram. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol. 31, 1-9
  4. Crick, F.H. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548-555
  5. Sahm, K., C. Knoblauch, and R. Amann. 1999. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine arctic sediments. Appl. Environ. Microbiol. 65, 3976-3981
  6. Widdel, F. and F. Bak. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p. 3352-3378. In A. Balows, H.G. Truper, M. Dworkin, W. Harder, and K.H. Schleifer (eds.), The prokaryotes, 2nd ed. Springer-Verlag, New York, N.Y., USA
  7. Ravenschlag, K., K. Sahm, C. Knoblauch, B.B. Jorgensen, and R. Amann. 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Appl. Environ. Microbiol. 66, 3592-3602
  8. Leloup, J., L. Quillet, T. Berthe, and F. Petit. 2006. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol. Ecol. 55, 230-238
  9. Wang, Y.C., R.G. Huang, and G.J. Wan. 1998. The newly developed sample for collecting samples near the lacstrine sediment-water interface. Geol. Geochem. 1, 94-96
  10. Koizumi, Y., S. Takii, M. Nishino, and T. Nakajima. 2003. Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in the profundal sediment of a mesotrophic lake. FEMS Microbiol. Ecol. 44, 101-108
  11. Larsen, O., T. Lien, and N.K. Birkeland. 2001. A novel organization of the dissimilatory sulfite reductase operon of Thermodesulforhabdus norvegica verified by RT-PCR. FEMS Microbiol. Lett. 203, 81-85
  12. Trimmer, M., K.J. Purdy, and D.B. Nedwell. 1997. Process measurement and phylogenic analysis of the sulfate reducing bacterial communities of two contrasting benthic sites in the upper estuary of the Great Ouse, Norfolk, UK. FEMS Microbiol. Ecol. 24, 333-342
  13. Colleran, E., S. Finnegan, and P. Lens. 1995. Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek 67, 29-46
  14. Leloup, J., L. quillet, C. Oger, D. Boust, and F. Petit. 2004. Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments. FEMS Microbiol. Ecol. 47, 207-214
  15. Purdy, K.J., D.B. Nedwell, T.M. Embley, and S. Takii. 1997. Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosm from a Japanese estuary. FEMS Microbiol. Ecol. 24, 221-234
  16. 현문식, 장인섭, 박형수, 김병홍, 김형주, 이홍금, 권개경. 1999. 시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성 호흡세균과의 상관관계. Kor. J. Appl. Microbiol. Biotechnol. 3, 252-259
  17. Geets, J., B. Borremans, L. Diels, D. Springael, J. Vangronsveld, D. Van Der Lelie, and K. Vanbroekhoven. 2006. DsrB Gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J. Microbiol. Methods 66, 194-205
  18. Jorgensen, B.B. 1982. Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296, 643-645
  19. Kaneko, R., T. Hayashi, M. Tanahashi, and T. Naganuma. 2007. Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediment cores. Marin Biol. 9, 429-436
  20. Muyzer, G., E.C. De Waal, A.G. Uitterlinden, G. Muyzer, E.C. De Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700
  21. Perez-Jimenez, J.R., L.Y. Young, and L.J. Kerkhof. 2001. Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsrAB) genes. FEMS Microbiol, Ecol. 35, 145-150
  22. Wagner, M., A.J. Roger, J.L. Flax, G.A. Brusseau, and D.A. Stahl. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975-2982
  23. Castro, H., K.R. Reddy, and A. Ogram. 2002. Composition and function of sulfate-reducing Prokaryotes in eutrophic and Pristine areas of the Florida Everglades. Appl. Environ. Microbiol. 68, 6129-6137
  24. Li, J.H., K.J. Purdy, S. Takii, and H. Hayashi. 1999. Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment. FEMS Microbiol. Ecol. 24, 221-234
  25. Scholten, J.C.M., S.B. Joye, J.T. Hollibaugh, and J.C. Murrell. 2005. Molecular analysis of the sulfate reducing and archaeal community in a Meromictic Soda Lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb. Ecol. 50, 29-39
  26. Chang, Y.J., A.D. Peacock, P.E. Long, J.R. Stephen, J.P. McKinley, S.J. Macnaughton, A.K.M.A. Hussain, A.M. Saxton, and D.C. White. 2001. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol. 67, 3149-3160
  27. Dhilon, A., A. Teske, J. Dillon, D.A. Stahl, and M.L. Sogin. 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol. 69, 2765-2772
  28. Karr, E.A., W.M. Sattley, M.R. Rice, D.O. Jung, M.T. Madigan, and L.A. Achenbach. 2005. Diversity and distribution of sulfate-reducing bacteria in perimanently frozen lake fryxell, mcmurdo dry valleys, antarctica. Appl. Environ. Microbiol. 71, 6353-6359
  29. Minz, D., J.L. Flax, S.J. Green, G. Muyzer, Y. Cohen, M. Wagner, B.E. Rittmann, and D.A. Stahl. 1999. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65, 4666-4671
  30. Wang, F., C. Liu, X. Liang, and Z. Wei. 2003. Remobilization of trace metals induced by microbiological activities near sediment-water interface, Aha Lake, Guiyang. Chinese Science Bulletin 48, 2352-2356
  31. Detmers, J., H. Strauss, U. Bergmann, K. Knittel, and J. Kuever. 2004. FISH shows that Desulfotomaculum spp. are the dominating sulfate-reducing bacteria in a pristine aquifer. Microb. Ecol. 47, 236-242
  32. Klein, M., M. Friedrich, A.J. Roger, P. Hugenholtz, S. Fishbain, H. Abicht, L.L. Blackall, D.A. Stahl, and M. Wagner. 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183, 6028-6035
  33. Bahr, M., B.C. Crump, V. Klepac-Ceraj, A. Teske, M.L. Sogin, and J.E. Hobbie. 2005. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ. Microbiol. 7, 1175-1185
  34. 김인선, 남종현, 전선옥, Y. Zhao, 안태석. 2007. The vertical distribution of sulfate reducing bacteria (SRB) by Florescence In Situ Hybridization in sediments of lakes in Korea and China. Korean J. Limnol. 40, 553-559