서 론

무는 전통음식인 김치재료로서 우리민족에게 매우 익숙한 재료이다. 우리나라에는 한사절 때에 들어왔다고 하나 이익의 '성호사설'에 의하면 그 이전으로 추정되며 현재 재배현황은 우리나라의 경우 2002년 전체 재배면적의 10%에 해당하는 31,387 ha로 에너급이나 감소추세이나 여전히 김치재료로서 필요성은 더욱 더 강조되고 있다. 한편 이러한 국내대 무종자의 지하부 내방성은 계절, 토질에 따라 각각 다르며 국내 유통되고 있는 무의 종자 별 내방성에 관한 품종의 다양성 연구가 필요하다고 생각된다.

지하부식물은 다양한 지하 환경에서 살아가기 위해 많은 원인물질들을 갖고 있으며 특히 지하부의 다양한 미생물의 침입에 대응하기 위해 양질지방질(defensin) 가지고 있다[1,5,8,9,15].

우선 본 연구에 사용된 항진균 및 항모호اخ 성장을 필한 조 단백질 분리를 위해, 20 mM Tris - HCl (pH 8.0)을 첨가한 두 종자 분해 액을 4 ℃에서 1일간 식지시킨 다음, 거즈 및 여과지를 통해 1회씩 거른 후 얻어진 액을 12,000 rpm 에서 원심 분리하여 0.4 μm 면과 액을 통해 고형물을 제거한 후 조 단백질 용액을 얻어냈다. 조 단백질 용액을 각종 항 괴광물 실험에 사용하였으며 이후 냉동 보관하여 다음 실험에 사용하였다.

항 괴광물 (Botrytis cinerea) 항 효모 (Saccharomyces cerevisiae, Candida albicans) 활성 측정을 위해 Dish assay 방법이[14] 사용되었다.
100 µl의 Botrytis cernerea의 포자 협잡액을 PDA-plate에 도말한 후 Disks로 접촉 시키고 그 위에 sample을 흘러서 24℃에서 약 72시간 배양 후 inhibition zone를 특정 하였다. 항 효모활성 측정에는 Saccharomyces cerevisiae, Candida albicans를 전 배양 후 100 µl를 취해, 하루 본 배양 시간 다음 12시간째의 배양액을 100 µl 취해 항 공광이 test와 같은 방법을 사용하였다.

국내 시장 우리 항 진균 단백질의 유전자를 획득하기 위해 동가에서 채배되고 있는 각종 꽃 종자 Songbaek, Myungsan, Jangwon, Palkwang, Beakja, Chungwoon, Baekwoon (Nongwoo Bio Co., Suwon, Korea) 50 g을 수색 후 20배 부피의 20 mM Tric-HCl (pH 8.0) 완충액을 점차 하여 상용 Homogenizer를 사용하여 분쇄한 후 iNiRON의 (iNiRON. Co., Sungnam, Korea) easy - Blue™ Total RNA extraction Kit를 사용하여 RNA시료를 제조하였다. 이렇게 제조된 RNA 시료로부터 Anti fungal protein encoding gene 을 Taq DNA polymerase를 사용하여 PCR amplification 하였다. Gene Bank/EMBL (NCBI, USA)상에서 획득한 항 공광이 단백질 서열을 토대로 AMPs의 degenerating primer를 제공하였으며 (Table 1) cloning을 위해 sense primer에는 Ncol site를 anti sense primer에는 XhoI site를 삽입하여 pET-28a plasmid (WWW.Promega.com)을 이용하여 cloning 하였다. 선별된 clone들은 DNA sequencing 통해 open reading frame의 in-frame을 확인하였으며, 또한 다중 염기서열 분석을 수행하였다.

염기서열 분석된 DNA 단편의 sequence를 FASTA format으로 정리한 뒤 pairwise alignment 및 유연성(distance)을 관찰하기 위해 Clustal W program (http://www.ebi.ac.uk/clusterw)을 통해 분석하였다.

저자는 이미 두 개의 (Baekwoon)에서 항 공광이 단백질을 분리하여 MALD-ToF mass spectrometry 이용한 PMF 분석에서 이미 발표된[15] 항 공광이 단백질 (Rs-AFP) 외 많은 상동성이 있음을 보고한 바가 있다.[12] 이에 본 연구에서는 먼저 이들 중자로부터 분리한 조 단백질을 이용하여 항 공광이 및 항 화학성 활성을 확인하고 또한 각 종자로부터 분리한 Total RNA시료와 Table 1의 Primer를 이용하여 RT-PCR amplification을 행한 반응 결과를 Table 2에 나타내었다.

PCR반응의 경우 약 0.2 kb의 product가 Myungsan과 Chungwoon을 제외한 모든 종자에서 검출되었으며 항 효모활성은 Myungsan과 Baekwoon에서만 검출되었다. 이와는 달리 각 시료의 항 공광이 (Botrytis cernerea) 활성은 항 효모와는 달리, 사용된 모든 시료에서 검출되었다. Terras 등[15]에 의해 분리된 Rs-AFP1, Rs-AFP2, Rs-AFP3, Rs-AFP4는 항 공광이 활성은 나타나지만 항 효모활성은 나타나지 않은 것으로 알려져 있어 Myungsan과 Baekwoon 그리고 Chungwoon에서 나타난 항 공광이 단백질의 특성은 기존의 Rs-AFP와는 다른 단백질임 가능성을 시사하였으며 특히 Myungsan의 경우 본 실험에서 사용된 primer에 의한 RCR 반응에도 산물이

| Table 1. Degenerating primer used for cloning KR5-AFP genes from Gene Bank/EMBL (AMP5s) |
|---|-------------------------------|
| Primer name | Sequence(5’-3’) | Sense primer | Antisense primer |
| RAPF | cgtaagcggttcgagtaact | RAPr | cgtaagcggttcgagtaact |

| Table 2. The list of antimicrobial activity from seed protein and genetic products by PCR amplification from seed total RNA. |
|---|-------------------------------|
| Seed name | Symbol | Antiyeast | Antifungal | PCR amplification |
| Songbaek | A | - | + | + |
| Myungsan | B | + | - | - |
| Jangwon | C | - | + | + |
| Palkwang | D | - | + | + |
| Beakja | E | - | + | + |
| Chungwoon | F | - | + | + |
| Baekwoon | G | + | + | + |

*For the antimicrobial test, the seed crude extracts (freezing dried) were diluted with distilled water and tested at the concentration of 10 mg/disk, respectively.

*For PCR amplification, the degenerating primer from Gene Bank/EMBL (Table1) for cloning KR5-AFP genes was used.

Fig. 1. Multiple alignment of amino acid sequences cloned KR5-AFPs
Fig. 2. Genetic neighbor-joined by between KR's-AFP clone and Rs-AFP [15]

검출되지 않아 기존의 AMPs들과는 전혀 다른 것임을 시사하였다. 그러나 Chungwoon의 경우 항 효모 및 항 공포이 활성은 조 단백질 실험에서 나타나기 전의 Rs-AFP유전자를 주형으로 한 PCR 반응이 나타나지 않아 단백질의 활성이 관함 추가 실험이 요구된다고 할 것이다.

이렇게 확보한 0.2 Kb의 PCR산물을 (5개 품종에서의 PCR 산물 검출)을 pET-28a의 cloning site에서 cloning한 후 이들 clones(약 30개) 중 무작위로 각 품종의 7개 Clone을 염기분석하여 아미노산 서열을 다중 정립한 결과는 Fig. 1에서 나타나었다.

그리고 보도의 30권가의 signal peptide를 가진 총 80개의 아미노산으로 된 서열로 각 품종간의 유사성이 매우 높음을 나타내었다.

지하부 작물인 무의 경우 많은 항 공포이 단백질의 유전자를 cloning되어 그들의 유전적 정보가 제공되고 있다[15]. 이들의 유전적 다중 서열을 GeneBank상에서 확인 후, 본 연구에서 획득한 항 공포이 단백질의 유전자 염기서열에서 유추된 아미노산 서열을 pairwise alignment하여 상호 유연성을(distance)을 관찰하기 위해 Clustal W program (http://www.ebi.ac.uk/clustalw)을 통해 분석하였다.

그 결과, Palkwang무로 부터 얻어낸 clone pRAP-D1은 Rs-AFP2와 매우 유사한 정보를 보여 동종의 항 전극 단백질로서 추정되며 나머지는 0.01이내의 distance를 보여 국내 시판 무의 항 전극 단백질은 Terras 등[15]에 의해 분리된 Rs-AFP 외는 다음을 시사하였다. (Fig 2)

특히 본 연구에 사용된 primer에 의해 clone된 것들 중 항 효모 활성을 가지는 Baekwoon의 pRAP G3 clone은 항 효모 활성을 가지고 있어 기존에 발현된 항 공포이 단백질과는 그 유전적 특성이 매우 다른을 시사하여 항후 이들 단백질의 항 공포이 mechanism의 차이 또한 매우 흥미롭게 생각된다.

이상에서 살펴보았듯이 국내 시판 무의 항 공포이 특성은 이미 알려진 항 공포이의 그것들과 유전적 특성이 다를 수 있고 국내 시판 무가거도 약간의 유연성을 보이거나 상기 결과를 토대로 이들의 항 공포이 내면성의 정도는 앞으로 재배 토질과 기후에 따른 정밀한 재배 실현을 병행함으로써 보다 정확한 결과를 기대할 수 있을 것이다.

요 약

국내 시판 무 (Baekwoon)의 씨앗으로부터 항 전극 단백질(RAP-1,2)분리 하였으며[12] 이들 항 전극 단백질을 MALDI-TOF-소출법과, 2S storage albumin, Rs-AFP등 지하부 식물의 defensin protein과[15] 일치함을 확인하였고 이에 시판되는 7종의 각각의 무 씨앗으로부터 조 단백질과 Total RNA를 분리하여 항 효모 (Saccharomyces cerevisiae, Candida albicans.) 및 항 공포이 (Botryis cinerea)에 대한 항 전극성을 실험한 결과 항 공포이 활성은 모든 품종에서 보였으나 항 효모 활성은 2종 (Myungsan, Baekwoon)의 무의에서만 보였 다. 또한 기존에 알려진 항 전극 단백질(Rs-AFP)의 유전자를 Gene Bank/EMBL에서 획득하여 씨앗으로부터 분리한 Total RNA에 RT-PCR한결과, 7종 중 2종은 0.2kb의 산물이 보이지 않았다. 이들 Rs-AFP 유전자산물을 염기서열을 분석 하였으며 이 염기서열에서 얻어진 아미노산 서열을 Clustal W를 이용한 pairwise alignment 분석에 의해 국내 시판 무의 품종간 각clone의 계통성을 분석한 결과를 보고한다.

감사의 글

본 연구는 농축 과제 (202068-03-3-S010) 사업 일환으로 수행되었으며 이에 감사 드립니다.

참 고 문헌

