Growth Inhibitions of Strains Exhibiting Resistances against General Disinfectants and Antibiotics by MBT-01108 Material.

MBT-01108 물질에 의한 일반 소독제 및 항생물질 내성균주의 생육억제

  • Kim, Hae-Nam (Department of Beauty Care, Masan College) ;
  • Park, Jin-Young (Division of Biological Science, Pusan National University) ;
  • Kim, Sam-Woong (Division of Biological Science, Pusan National University) ;
  • Jun, Hong-Ki (Division of Biological Science, Pusan National University)
  • 김해남 (마산대학 뷰티케어학과) ;
  • 박진영 (부산대학교 생명과학부 미생물학과) ;
  • 김삼웅 (부산대학교 생명과학부 미생물학과) ;
  • 전홍기 (부산대학교 생명과학부 미생물학과)
  • Published : 2007.09.30


The 30% resistant frequencies of pathogenic bacteria were identified against generally utilizing disinfectants. Among the used disinfectants, foodsef, Taego, and Iodo 175 were dictated by lower sensitivities against pathogenic bacteria, as well as higher resistant frequencies when compared with other disinfectants. The resistant frequencies against antibiotics were also dictated by 30% through MIC (minimal inhibitory concentration) and paper disc methods. Especially, the used bacteria exhibited resistances against gentamycin, kanamycin, and streptomycin, which included in all aminoglycoside group. The MBT-01108 material, which extracted and purified from a powder obtained by processing of Opunita ficus-indica var. saboten Makino trunk, did not develop or grow resistant bacteria. Interestingly, the multi-drug resistant bacteria such as MRSA, resistant Pseudomonas aeruginosa, VRE, and E. coli 0157 did not resistant against MBT-01108 material. These results suggest that MBT-01108 material uses as an anti-microbial agent.


  1. Branch, A., D. H. Starkey and E. E. Power. 1965. Diversifications in the tube dilution test for antibiotic sensitivity of microorganisms. Appl. Microbiol. 13, 469-472
  2. Cloechaert, A., S. Baucheron, G. Flaujac, S. Schwarz, C. Kehrenverg, J. Martel, and E. Chaslus-Dancla. 2000. Plasmid-mediated florfenicol resistanc enconded by th floR gene in Escherichia coli isolated from cattle. Antimicrob. Agents Chemother. 44. 2858-2860
  3. Cohen, M. L. 1992. Epidemiology of drug resistance : Implications for a post-antimicrobial era. Science 257, 1050-1055
  4. EUCAST. 2000. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 6, 508
  5. Ferguson, G. C., J. A. Heinemann and M. A. Kennedy. 2002. Gene transfer between Salmonella enterica serovar Typhimurium inside epitherial cells. J. Bacteriol. 184, 2235-2242
  6. Frontiers in Biotechnology. 1994. Antibiotic Resistance. Science 264, 317-476
  7. Hoang, T. T. and H. P. Schweizer. 1999. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (Fab I) : A target for the antimicrobial triclosan and its role in homoserine lactone syntheis. J. Bacteriol. 181, 5489-5497
  8. Horii, T., Y. Arakawa, M. Ohta, S. Ichiyama, R. Wacharotayankun and N. Kato. 1987. Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-Iactams, including moxalactam. Antimicrob. Agents Chemother. 37, 984-990
  9. Kang, S. S. 1985. The encyclopedia of oriental herbal medicine. pp. 2731-2733. Sanghae science technology publishing company Sohakgoan, Tokyo
  10. Kim, J., C. I. Wei and M. R. Marshall. 1995. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 43, 2839-2845
  11. Ko, G. S. 1994. Luminous fluxplant taxoomy. pp. 341-342. Seomon company, Seoul in Korea
  12. MacLowry, J. D. and M. J. Jaqua. 1970. Detailed methodology and implementation semiautomated serial dilution micro technique for antimicrobial susceptibility testing. Appl. Microbiol. 20, 46-53
  13. McMurry, L. M., M. Oethinger and S. B. Levy. 1998a. Triclosan targets lopid synthesis. Nature 394, 531-532
  14. McMurry, L. M., M. Oethinger and S. B. Levy. 1998b. Overexpression of marA, soxS or acrAB produces resistance to triclosan in Escherichia coli. FEMS Microbiol Lett. 166, 305-309
  15. Reddish, G. F. 1957. Antiseptics, Disinfectants, Fungicides and Chemical and Physical Sterilization. pp. 23-39, 2nd eds., Philadelphia, Lea & Febiger
  16. Riedl, S., K. Ohlsen, G. Werner, W. Witte and J. Hacker. 2000. Impact of flavophospholipol and vancomycin on conjugational transfer of vancomycin resistance plasmids. Antimicrob. Agents Chemother. 44, 3189-3192
  17. RusselI, A. D. 2001. Disinfection, Sterilization and Preservation, pp. 18-20, 5th eds., (Block, 5.5.), Philadelphia, Lippincott Williams and Wilkins
  18. Simjee, S., D. G. White, P. F. McDermott, D. D. Wagner, M. J. Zervos, S. M. Donabedian, L. L. English, J. R. Hayes and R. D. Walker. 2002. Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: Evidence of gene exchange between human and animal Enterococci. J. Clin. Microbiol. 40, 4659-4665
  19. Stuart, B. L. 2001. Antibacterial Household Products : Cause for Concern. Emerg. Infect. Dis. 7, 512-515
  20. Suller, M. T. and A. D. Russell. 2000. Triclosan and antibiotic resistance in Stahpylococcus aureus. J. Antimicrob. Chemother. 46, 11-18
  21. Swartz, M. N. 1997. Use of antimicrobial agents and drug resistance. N. Engl. J. Med. 337, 419-492
  22. Tomasz, A. 1994. Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University Workshop. N. Engl. J. Med. 330, 1247-1251
  23. Yanagi, M. and K. Yamazaki. 1989. Useful plants of the world. pp. 53-54. Heibonsha, Tokyo
  24. Kahnsah, E., P. Kopsombut, M. A. Malque and A. Brossi. 1993. The effects of mescaline and some of its analogs on cholinergic neuromuscular transmission. Neuropharmacology 32(2), 169-174
  25. Lennette, E. H., A. Balows, W. J. Hausler and H. J. Jr., Shadomy. 1985. Manual of Clnical Microbiology, 4th ed. American Society for Microbiology 978-987

Cited by

  1. The Distribution of Indicator Microorganisms and Identification of Antibiotic Resistant Strains in Domestic Animal Feces vol.37, pp.4, 2011,