DOI QR코드

DOI QR Code

Construction of a Transgenic Plant to Develop a New Method for the Isolation of Calmodulin-Binding Proteins

새로운 방법을 이용한 칼모둘린 결합 단백질 분리를 위한 형질 전환 식물체의 구축

  • Kim, Sun-Ho (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Lee, Kyung-Hee (Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Kyung-Eun (Division of Applied Life Science (BK21 program), Plant Molecular Bilogy and Biotechnology Research Center, Gyeongsang National University) ;
  • Jung, Mi-Soon (Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lim, Chae-Oh (Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lee, Shin-Woo (Department of Crops Biotechnology, Jinju National University) ;
  • Chung, Woo-Sik (Environmental Biotechnology National Core Research Center, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 김선호 (경상대학교 환경생명과학 국가핵심연구센터) ;
  • 이경희 (경상대학교 환경생명과학 국가핵심연구센터, 응용생명과학부) ;
  • 김경은 (경상대학교 응용생명과학부) ;
  • 정미순 (경상대학교 응용생명과학부) ;
  • 임채오 (경상대학교 환경생명과학 국가핵심연구센터, 응용생명과학부) ;
  • 이신우 (진주산업대학교 작물과학과) ;
  • 정우식 (경상대학교 환경생명과학 국가핵심연구센터, 응용생명과학부)
  • Published : 2007.09.30

Abstract

Calmodulin (CaM), a ubiquitous calcium-binding protein, regulates diverse cellular functions by modulating the activity of a variety CaM-binding proteins (CaMBPs). Because eukaryotes have multiple CaMBPs, it is important to isolate and characterize them in different tissues and conditions. So far a number of CaMBPs have been identified through classical screening methods. Many classes of proteins have been predicted to bind CaMs based on their structural homology with already known targets. In an effort to develop a method for large-scale analysis of CaMBPs in Arabidopsis, we have generated a transgenic plants overexpressing AtCaM2-GFP. We performed protein pull-down assay to test whether exogenously expressed AtCaM2-GFP proteins can interact with CaMBPs. The exogenously expressed AtCaM2-GFP could strongly interact with a CaMBP, AS1 protein. This result suggests that AtCaM2-GFP in transgenic plants may interact with many CaMBPs in plant cell. Therefore, we will be able to isolate kinds of CaMBPs by using these transgenic plants in many different tissue and environments.

References

  1. Bouche, N., A Yellin, W. A Snedden and H. Fromm. 2005. Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435-466 https://doi.org/10.1146/annurev.arplant.56.032604.144224
  2. Clough, S. J. and A. F. Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  3. Collinge, M. and A. J. Trewavas. 1989. The location of calmodulin in the pea plasma membrane. J. Biol. Chem. 264, 8865-8872
  4. Fraichard, A, E. Perotti, O. Gavin and A Chanson. 1996. Subcellular localization, distribution and expression of calmodulin in Zea mays roots. Plant Sci. 118, 157-165 https://doi.org/10.1016/0168-9452(96)04436-6
  5. Gleave, A. P. 1992. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 1203-1207 https://doi.org/10.1007/BF00028910
  6. Hoeflich, K. P. and M. Ikura. 2002. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108, 739-742 https://doi.org/10.1016/S0092-8674(02)00682-7
  7. McAinsh, M. R. and A. M. Hetherington. 1998. Encoding specificity in $Ca^{2+}$ signaling systems. Trend Plant Sci. 3, 32-36 https://doi.org/10.1016/S1360-1385(97)01150-3
  8. McCormack, E., Y. C. Tsai and J. Braam. 2005. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plants Sci. 10, 383-389 https://doi.org/10.1016/j.tplants.2005.07.001
  9. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures, Plant Physiol. 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  10. Popescu, S. C., G. V. Popescu, S. Bachan, Z. Zhang, M. Seay, M. Gerstein, M. Snyder and S. P. Dinesh-Kumar. 2007. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc. Natl. Acad. Sci. USA 104, 4730-4735 https://doi.org/10.1073/pnas.0611615104
  11. Reddy, A. S. N. 2000. Calcium: silver bullet in signaling. Plant Sci. 160, 381-404 https://doi.org/10.1016/S0168-9452(00)00386-1
  12. Reddy, V. S., C. S. Ali and A. S. N. Reddy. 2002. Genes Encoding Calmodulin-binding Proteins in the Arabidopsis Genome. J. Biol. Chem. 277, 9840-9852 https://doi.org/10.1074/jbc.M111626200
  13. Snedden, W. A. and H. Fromm. 2001. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 151, 35-66 https://doi.org/10.1046/j.1469-8137.2001.00154.x
  14. Trewavas, A. J. and R. C. Malho. 1998. $Ca^{2+}$ signalling in plant cells: the big network! Curr. Opin. Plant Biol. 1, 428-433 https://doi.org/10.1016/S1369-5266(98)80268-9
  15. Zielinski, R. N. 1998. Calmodulin and calmodulin-binding proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 697-725 https://doi.org/10.1146/annurev.arplant.49.1.697
  16. Wesley, S. V., C. A. Helliwell, N. A. Smith, M. B. Wang, D. T. Rouse, Q. Liu, P. S. Gooding, S. P. Singh, D. Abbott, P. A. Stoutjesdijk, S. P. Robinso, A. P. Gleave, A. G. Green and P. M. Waterhouse. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27, 581-590 https://doi.org/10.1046/j.1365-313X.2001.01105.x