DOI QR코드

DOI QR Code

Temporal Distribution of Pico- and Nanoplankton at a Station in Okkye Bay

옥계만 단일정점에서 극미소 및 미소플랑크톤의 시간적 분포

  • Lee, Won-Je (Department of Environmental Engineering, Kyungnam University)
  • 이원재 (경남대학교 환경공학과)
  • Published : 2007.07.30

Abstract

In order to understand the temporal distribution of pico- and nanoplankton and factors controlling its distribution at a station in Okkye Bay of Masan Bay located in the southern part of Korea, this study was conducted on two weeks interval from April 2005 to April 2006, and several abiotic and biotic factors were measured. During the study, picoplankton consisted of picoflagellates, cyanobacteria and heterotrophic bacteria, and nanoplankton consisted of nanoflagellates excluding dinoflagellates. The concentration of chlorophyll-a (chl-a) was a mean of $4.33\;{\mu}g/L$, and the nanoplanktonic ($<20\;{\mu}m$) chl-a size fraction was a mean of 39.5 % and significantly correlated with water temperature. The abundances of cyanobacteria and photosynthetic flagellates (PF) were means of $24.4{\times}10^{3}\;cells/mL\;and\;2.87{\times}10^{3}\;cells/mL$, respectively. The contribution of picoflagellates to the PF abundance varied among the sampling occasions and was a mean of 29 %, but to the PF carbon biomass was 2.6 % only. The PF abundance had significant relationships with water temperature, and silicate and TIN concentrations, suggesting that the PF abundance seemed to be primarily bottom-up regulated. The abundance of heterotrophic bacteria was a mean of $3.18{\times}10^{6}\;cells/mL$ and unlike other ecosystems it did not have relationships with chl-a and heterotrophic flagellates (HF), suggesting that bacterial abundance did not seem to be bottom-up or top-down regulated. HF mostly consisted of cells less than $5{\mu}m$ and its abundance was a mean of $2.71{\times}10^{3}\;cells/mL$. Of the HF abundance, picoflagellates occupied about 31 %, and occupied about 9 % of the HF carbon biomass. HF grazing activity on heterotrophic bacteria was relatively low and removed about 10 % of bacterial abundance, suggesting that HF might not be major consumers of bacteria and there seems to be other consumers in Okkye Bay. These results suggest that Okkye Bay may have a unique microbial ecosystem.

References

  1. Johnson P. W., Sieburth J. McN., 1979, Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr., 24, 928-935 https://doi.org/10.4319/lo.1979.24.5.0928
  2. Waterbury J. B., Watson S. W., Guillard R. R. L., Brand L. E., 1979, Widespread occurrence of a unicellular, marine, planktonic cyanobacterium, Nature, 277, 293-294 https://doi.org/10.1038/277293a0
  3. Stockner J. G., 1988, Phototrophic picoplankton: an overview from marine and freshwater ecosystems, Limonol. Oceanogr., 33, 765-775 https://doi.org/10.4319/lo.1988.33.4_part_2.0765
  4. Stockner J. G., Antia N. J., 1986, Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective, Can. J. Fish. Aquat. Sci., 43, 2472-2503 https://doi.org/10.1139/f86-307
  5. Weisse T., 1993, Dynamics of autotrophic picoplankton in marine and freshwater ecosystems, p.327-370, In: Advances in microbial ecology, ed. by Jones J. G., Plenum Press, New York
  6. Azam F., Fenchel T., Field J. G., Gray J. s., Meyer-Reil L. A., Thingstad F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10, 257-263 https://doi.org/10.3354/meps010257
  7. Porter K. G., Sherr E. B., Sherr B. F., Pace M., Sanders R. W., 1985, Protozoa in planktonic food webs, J. Protozool., 32, 409-415 https://doi.org/10.1111/j.1550-7408.1985.tb04036.x
  8. 신윤근, 심재형, 조준성, 박용철, 1990, 천수만 식물플랑크톤의 상대적 중요성: 종조성, 개체수 및 일차생산력, 한국해양학회지, 25, 217-228
  9. 심재형, 여환구, 신윤근, 1991, 한국연안해역에 있어서 온배수 배출의 생태학적 영향. I. 고리원자력 발전소 주변해역에서 미소 및 초미소 자가영양 플랑크톤의 중요성, 한국해양학회지, 26, 77-82
  10. 강연식, 최중기, 정경호, 박용철, 1992, 서해 중동부 연안수역과 경기만에서 일차생산력과 동화계수에 관한 연구, 한국해양학회지, 27, 237-246
  11. 정익교, 강윤향, 김영진, 권오섭, 1998, 한국연안 초미세 플랑크톤 생태: I. 대한해협 서수도 해역, Algae, 13, 101-107
  12. 신범, 이준백, 2002, 제주 중문연안역의 초미세, 미소, 소형플랑크톤 시.공간적 분포, 한국해양학회지 바다, 7, 78-86
  13. 양은진, 최중기, 2003, 경기만 수역에서 미세생물 군집의 계절적 변동 연구 II. 미소형 및 소형 동물 플랑크톤, 한국해양학회지 '바다', 8, 78-93
  14. 양은진, 최중기, 현정호, 2003, 경기만 수역에서 미세생물 군집의 계절적 변동 연구 I. 박테리아와 종속영양 미소편모류, 한국해양학회지 바다, 8, 44-57
  15. Lee W. J., Choi J. K., 2000, The role of heterotrophic protists in the planktonic community of Kyeonggi Bay, Korea, J. Korean Soc. Oceanogr., 35, 46-55
  16. Lee W. J., Park N. J., Choi J. K., 2002, Abundance of heterotrophic- and photo-synthetic dinoflagellates and factors controlling their abundance in Korean coastal waters during summer 1994, J. Korean Soc. Oceanogr., 37, 201-211
  17. Park J. S., Cho B. C, 2002, Active heterotrophic nanoflagellates in the hypoxic water-column of the eutrophic Masan Bay, Korea, Mar. Ecol. Prog. Ser., 230, 35-45 https://doi.org/10.3354/meps230035
  18. Parsons T. R., Maita Y., Lalli C. M., 1984, A manual of chemical and biological methods for seawater analysis, Pegamon Press, Oxford, 173pp
  19. Lee S. H., Fuhrman J. A., 1987, Relationships between biovolume and biomass of naturally derived marine bacterioplankton, Appl. Environ. Microbiol, 53, 1298-1303
  20. Cuhel R. L., Waterbury J. B., 1984, Biochemical composition and short term nutrient incorporation patterns in a unicellular marine cya-nobacterium, Synechoccus (WH 7803), Limnol. Oceanogr., 29, 370-374 https://doi.org/10.4319/lo.1984.29.2.0370
  21. Edler L., 1979, Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Baltic Marine Biologists Publication, 5, 1-38
  22. Borsheim K. Y., Bratbak G., 1987, Cell volume to cell carbon conversion factors for a bacter-ivorus Monas sp. enriched from sea waters, Mar. Ecol. Prog. Ser., 36, 171-175 https://doi.org/10.3354/meps036171
  23. 장풍국, 이원제, 장민철, 이재도, 이우진, 장만, 황근춘, 신경순, 2005, 광양만에서 무기 영양염의 시공간적 분포를 조절하는 요인, Ocean Pol. Res., 27, 359-379 https://doi.org/10.4217/OPR.2005.27.4.359
  24. Chang M., Shim J. H., Huh H. T., 1987. Nanoplankton of the Korean coastal waters. Ocean Res., 9. 7-14 https://doi.org/10.1016/0141-1187(87)90027-7
  25. 최중기, 박용철, 김용철, 이영철, 정창수, 손승규, 황학진, 한범석, 1988, 서해 연안어장의 생산력 조사, 수진연구보고, 42, 143-168
  26. 정경호, 박용철, 1988, 서해 경기만이 기초생산력 질소계 영양염의 재생산에 관한 연구, 한국해양학회지, 23, 194-206
  27. 강연식, 최중기, 2002, 고리, 월성, 울진 및 영광 연안해역에서 식물플랑크톤 군집의 생태학적 특성 II. 현존량 분포 및 환경요인들 (1992-1996), 한국해양학회지 바다, 7, 108-128
  28. Billen G. C., Lancelot C., Mayberk M., 1991, N. P. Si retention along the aquatic continuum from land to ocean, p. 19-44. In: Ocean Margin Processes in Global Change, eds. by Matoura R. F. C., Martin J. M., Wollast R., John Wiley & Sons, New York
  29. Humborg C., Ittekkot V., Cociasu A., Bodungen B. V., 1997, Effects of Danube River dam on Black Sea biogeochemistry and ecosystem structure, Nature, 386, 385-388 https://doi.org/10.1038/386385a0
  30. Lee W. J., 2007, Daily distribution of planktonic protists and factors controlling their distribution in Jangmok Bay, Unpublished
  31. Choi D. H., Na S. C., Park Y. C., Huh S. H., Cho B. C., 1999, Chracteristics of microbial abundance in hypoxic water of brackish Lake Shiwa, J. Korean Soc. Oceanogr., 34, 236-240
  32. Cho B. C., Shim J. H., 1998, Bacterial abundance and production in July 1997 in the vicinity of Tokdo, East Sea, J. Korean Soc. Oceanogr., 33, 205-211
  33. Lee W. J., 2007, Spatial distribution of planktonic protists in Saemanguem reclamation area, Unpublished
  34. Bird D. F., Kalff J., 1984, Empirical relationships between bacterial abundnace and chlorophyll concentration in fresh and marine waters, Can. J. Fish. Aquat. Sci., 41, 1015-1023 https://doi.org/10.1139/f84-118
  35. 심재형, 신윤근, 조병철, 1993, 만경동진강 염하구에서의 박테리아 및 식물플랑크톤의 역할과 상호관계, 한국해양학회지, 28, 107-113
  36. Cho B. C., Choi J. K., Chung C. S., Hong G. H., 1994, Uncoupling of bacteria and phyto-plankton during a spring diatom bloom in the mouth of the Yellow sea, Mar. Ecol. Prog. Ser., 115, 181-190 https://doi.org/10.3354/meps115181
  37. Berninger U.-G., Caron D. A., Sanders R. W., Finlay B. J., 1991, Heterotrophic flagellates of planktonic communities, their characteristics and methods of study, p. 39-56. In: The biology of free-living heterotrophic flagellates, eds, by Patterson D. J., Larsen J., Clarendon Press, Oxford
  38. Lee W. J., Patterson D. J., 2002, Abundance and biomass of heterotrophic flagellates, and factors controlling their abundance and distribution in sediments of Botany Bay, Microb. Ecol., 43, 467-481 https://doi.org/10.1007/s00248-002-2000-5
  39. Caron D. A., Finlay B. J., 1994, Protozoan links in food webs, p. 125-130. In: Progress in Protozoology, eds, by Hausmann K., Hulsmann N., Proceedings of the IX International Congress of Protozoology (Berlin 1993), Gustav Fischer Verlag, Stuttgart
  40. Dietrich D., Arndt H., 2000, Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates, Mar. Biol, 136, 309-322 https://doi.org/10.1007/s002270050689
  41. Gasol J. M, Vaque D, 1993, Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems? Limnol. Oceanogr., 38, 657-665 https://doi.org/10.4319/lo.1993.38.3.0657
  42. Sherr B. F., Sherr E. B., Fallon R. D., 1987, Use of monodispersed, fluorescently labeled bacteria to estimate In situ protozoan bacter-ivory, Appl. Environ. Microbiol., 53, 958-965
  43. Andersen P., Fenchel T., 1985, Bacterivory by microheterotrophic flagellates in seawater samples, Limnol. Oceanogr., 30, 198-202 https://doi.org/10.4319/lo.1985.30.1.0198
  44. Sanders R. W., Caron D. A., Berninger U.-G, 1992, Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison, Mar. Ecol. Prog. Ser., 86, 1-14 https://doi.org/10.3354/meps086001