A Study on Adopting Intelligent Control System in Active Suspension Equipment

Jung-hyen Park*

Abstract

This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting intelligent robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design robust control system. Numerical example is shown for validity of intelligent control system design in active suspension system.

 Keyword : 지능형 제어시스템(Inelligent Control System), 능동형 가상장치(Active Suspension), 강인제어(Robust Control)
I. 서론

최근의 스마트폰 시스템 설계에서는 경량과 생장성 높임으로 제어하는 기술의 적용이 일반화 되고 있으며, 다른 차량 안정성 제어장치와의 연계성이 높아짐에 따라, 제어시스템 설계에서는 보다 내구성이 강하고 제어효과의 응답성이 빠르며 정도 또한 높은 제어장치의 필요성이 요구되고 있다.[1] 시스템은, 현가장치 및 충격완화장치로서의 기능, 가속도 또는 신호중의 차량회전유지 및 열라인먼트 변화특성, 거친 노면 주행에서의 진동 승차감 등, 다양한 기반적 성능이 요구된다.[2] 그 외에도 현가장치의 기본구성이나 배치, 스프링, 연소버, 타이어 등 구성부품의 특성을 최적조합으로 하는 것은 높은 수준의 기술을 필요로 한다. 농도피 스피드제어는 보다 우수한 성능을 목표로 다양한 요구를 만족시키기 위하여 개발되고 있다.[3][4][5][6]

II. 지능형제어시스템설계

그림 1. 정상속도주행 실차시스템
Fig. 1. Steady Speed Driving Vehicle System

차량이 정상속도로 주행할 때의 주행정보는 승차감과 주행안정에 많은 영향을 미치며 차체의 진동부분은 상하 및 좌반진동이라고 할 수 있으며, 본 연구에서는 이러한 사항에 주목하여 전방 및 후방의 위치와 주행속도계에 따른 능동화장치를 해석하여 외부는 빠른 응답성과 높은 정도의 제어가 가능한 제어시스템을 해석, 설계하기 위하여 지능형 제어시스템의 적용에 관한 고찰을 하였다. 대상시스템의 운동방정식 및 상태공간표현에 관해 고찰하고 외란과 제어출력관계를 해석하여 안정화 피드백 컨트롤러의 존재성에 대하여 상세한 다음. 외란의 시간과 입력에 대한 지능형 제어시스템을 설계, 적용하여 본 연구의 유용성에 관하여 논한다.
\[m\dddot{z} = F_f + F_r, \quad I_{yy}\ddot{\theta} = l_f F_f - l_r F_r \]
\[z = \frac{l_r z_f + l_f z_r}{l}, \quad \theta = \frac{z_f - z_r}{l} \]

\[F_f = -k_f (z_f - z_0) - c_f (\dot{z}_f - \dot{z}_0) \]

\[F_r = -k_r (z_r - z_0) - c_r (\dot{z}_r - \dot{z}_0) \]

또한 전후의 스프링 하부 절명 운동방정식은

\[m_f z_{f1} = -F_f -k_f (z_f - z_0) + U_f \quad (2) \]

\[m_r z_{r1} = -F_r -k_r (z_r - z_0) + U_r \]

이와 같이 표현된다. 여기서 자체 피치관성모멘트와 절명 사이에 \(I_{yy} = ml_f l_r \)의 조건이 성립하면, (1)식 1,2 항의 관계로부터 다음이 성립한다.

\[m_f \dddot{z}_f = F_f \quad (m_f = \frac{ml}{l}) \quad (3) \]

\[m_r \dddot{z}_r = F_r \quad (m_r = \frac{ml}{l}) \]

따라서 전후 시스템 위치에 대한 자체 상대변위는 시스템의 형식에 관계없이 전후 비 간섭이 된다. 즉, 차량 전부(front part)의 응답은 전부에 가해지는 힘에 의해서만 결정되며, 차량 후부(rear part)의 응답은 후부에 가해지는 힘만으로 결정된다. (2), (3)식의 운동방정식을 행렬표현을 사용하면 다음과 같이 나타낼 수 있다.

\[M_{i}\dddot{z}_i + C_i \dot{z}_i + K_i z_i = H_i w + F_i u_i \quad (4) \]

\[M_{i}\dddot{z}_i + C_i \dot{z}_i + K_i z_i = H_i w + F_i u_2 \quad (5) \]

\[u_1 = U_f, \quad u_2 = U_r, \]

\[M_{i} = \begin{bmatrix} m_{f1} & 0 & 0 & 0 \\ 0 & m_{f2} & 0 & 0 \\ 0 & 0 & m_{r1} & 0 \\ 0 & 0 & 0 & m_{r2} \end{bmatrix}, \quad z_{i} = \begin{bmatrix} z_{f1} \\ z_{f2} \\ z_{r1} \\ z_{r2} \end{bmatrix}, \]

\[C_{i} = \begin{bmatrix} c_{f1} & c_{f2} & 0 & 0 \\ -c_{f1} & c_{f2} & 0 & 0 \\ 0 & 0 & c_{r2} & -c_{r2} \\ 0 & 0 & -c_{r2} & c_{r2} \end{bmatrix}, \quad u = \begin{bmatrix} U_f \\ U_r \end{bmatrix}, \]

\[K_{i} = \begin{bmatrix} (k_{f1} + k_{f2}) - k_{f2} & 0 & 0 \\ -k_{f2} & k_{f2} & 0 & 0 \\ 0 & 0 & (k_{r1} + k_{r2}) - k_{r2} \\ 0 & 0 & -k_{r2} & k_{r2} \end{bmatrix}, \]

\[H_{i} = \begin{bmatrix} k_{f1} \\ 0 \\ 0 \\ k_{r1} \end{bmatrix}, \quad F_{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad w = \begin{bmatrix} z_{f0} \\ z_{r0} \end{bmatrix}. \]

시간차 외란입력을 고려하지 않는 기존의 차량 운동방정식 시스템 모델링은 다음과 같다.

\[M_{i}\dddot{z}_i + C_i \dot{z}_i + K_i z_i = H_i w + F_i u \]

\[M_{i} = \begin{bmatrix} m_{f1} & 0 & 0 & 0 \\ 0 & m_{f2} & 0 & 0 \\ 0 & 0 & m_{r1} & 0 \\ 0 & 0 & 0 & m_{r2} \end{bmatrix}, \quad z_{i} = \begin{bmatrix} z_{f1} \\ z_{f2} \\ z_{r1} \\ z_{r2} \end{bmatrix}, \]

\[C_{i} = \begin{bmatrix} c_{f1} & c_{f2} & 0 & 0 \\ -c_{f1} & c_{f2} & 0 & 0 \\ 0 & 0 & c_{r2} & -c_{r2} \\ 0 & 0 & -c_{r2} & c_{r2} \end{bmatrix}, \quad u = \begin{bmatrix} U_f \\ U_r \end{bmatrix}, \]

\[K_{i} = \begin{bmatrix} (k_{f1} + k_{f2}) - k_{f2} & 0 & 0 \\ -k_{f2} & k_{f2} & 0 & 0 \\ 0 & 0 & (k_{r1} + k_{r2}) - k_{r2} \\ 0 & 0 & -k_{r2} & k_{r2} \end{bmatrix}, \]

\[H_{i} = \begin{bmatrix} k_{f1} \\ 0 \\ 0 \\ k_{r1} \end{bmatrix}, \quad F_{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad w = \begin{bmatrix} z_{f0} \\ z_{r0} \end{bmatrix}. \]

기존의 차량 시스템 모델링에서는 제어입력을 결정할 때 있어 전부와 후부의 외란입력의 시간차를 고려하지 않고
초기면을 참고면으로 제어입력값을 일방적으로 결정하기 때문에 본 연구에서의 지능형 제어시스템설계방법이 시스템 모델링 및 제어시스템설계에 있어보다 정확도 높은 제어성을의 실현이 가능한 모델링이라고 할 수 있다.

운동방정식 모델링에서 왜곡이 본 연구에서는 진행방향에서 처음 감지하는 외부요란에 대응하는 제어입력 U_f를 u_i로 하여, 다음 식

$$z_{r_0}(t) = z_{f_0}(t - \frac{t}{V_f})$$ \hspace{1cm} (6)

과 같이 주행속도와 전후축감각치에 의하여 정해지는 시간차 외란입력에 적절히 대응하는 제어시스템설계, 즉 $U_f = u_i$을 참조하여 $U_r = u_2$로 반영하는 지능형 제어시스템설계를 목적으로 한다. 농동현가장치의 제어방법으로 강압제어시스템설계인 H_∞ 제어를 적용한다.

x은 시스템의 상태, u은 조작입력 F_a, w은 외란입력 z_0, z은 제어출력, y은 관측출력으로 하여 (4)식의 운동방정식을 다음과 같은 상태공간표현으로 모델링한다.

(여기서 $i = 1,2$)

$$\dot{x} = A_t x + B_t w + B_i u_i$$
$$z = C_{1t} x + D_{12} u_i$$
$$y = C_2 x + D_{21} w$$ \hspace{1cm} (7)

행렬 및 설계변수 파라미터 값은 다음과 같다.

$$A_t = \begin{bmatrix} 0 & I \\ -M_t^{-1}K_t - M_t^{-1}C_t \end{bmatrix}$$
$$B_{1t} = \begin{bmatrix} M_{t}^{-1}H_t \\ \end{bmatrix}, B_t = \begin{bmatrix} 0 \\ M_{t}^{-1}F_{ti} \end{bmatrix}$$
$$C_{2t} = \begin{bmatrix} F_{ti}^T \\ 0 \end{bmatrix}, x = \begin{bmatrix} z_t \\ \end{bmatrix}$$

강압 H_∞ 제어에 있어서의 정수 γ, 임의의 정정행렬 V_1, V_2에 대하여 X, Y을 변수로 하는 다음과 같은 두 개의 Riccati방정식

$$A_t^T X + XA_t + \gamma^{-2}X B_{1t}B_{1t}^T X + XB_{2t}^T Y + C_{1t}^T C_{1t} V_1 + V_1 = 0$$
$$A_t^T Y + YA_t + \gamma^{-2}Y C_{1t}^T C_{1t} Y - Y C_{2t}^T C_{2t} Y + B_{1t} B_{1t}^T + V_2 = 0$$ \hspace{1cm} (8), (9)

이 $\gamma^2 Y^{-1} > X$을 만족하는 정정해 X, Y가 존재하면, 제어시스템을 내부안정으로 하며 동시에 H_∞ norm 조건 $\| T_w(s) \|_\infty < \gamma$를 만족하는 안정화 컨트롤러가 존재한다. 그리고 그와 같은 컨트롤러의 하드웨어가 다음과 같이 정의 할 수 있다. \[(7)(8) \]

$$\dot{x} = (A_t + \gamma^{-2}B_{1t}B_{1t}^T X - B_{2t} B_{1t}^T X - Z C_{2t}^T C_{2t} - \gamma^{-2}Z V_1) x + Z C_{2t}^T y$$
$$u = -B_{1t}^T x$$

여기서 $Z = \gamma^2 (\gamma^2 Y^{-1} - X)^{-1}$ 이다.

III. 수치 시뮬레이션

본 연구의 유용성을 검증하기 위하여, 대형시스템의 농동 현가장치에 지능형 강압 제어시스템을 적용해 본다. 그림2의 4차수로 시스템에 있어서, 사양은 차체절량 $m = 1790kg$, 스프링 하부 질량 $m_{f1} = 134.1kg$, $m_r = 109.5kg$, 폐치 관성 모멘트 $I_{yy} = 3523.6kgm^2$, 휠 펌프 및 서스펜션 파트 스프링 강성 계수 $k_{f1} = k_{f2} = 14111N/m$, $k_r_1 = k_r_2 = 1376N/m$, 서스펜션 감쇠계수 $c_{f2} = c_{r2} = 118Ns/m$, 주행 시 정상속도 $V = 60km/h$ 로 설정하였다. $l_f = 1.27m$, $l_r = 1.55m$ 이며, 외란은 돌출형(돌발형) 모델 변수 작업으로 설정하였다.

강압 H_∞ 제어시스템의 설계변수 간에 지능형 강압제어 알고리즘을 구성하여 그림1의 제어대상 농동 서스펜션 시스템에 적용하여 수치시뮬레이션을 실시한 결과를 다음에 나타낸다.
그림 3에 지면으로부터 전달된 노면 변위 외란 $w(x_0)$을 나타내었다. 이와 같은 노면외란이 동작적으로 약속되는 일정주행속도 $V=60 \text{km/h}$ 상행에서의 비교적 거친 외란이 제어대상인 차체에 입력되었을 경우를 설정하여 수치시뮬레이션을 실시하였다. 그림 4, 5은 외란에 대한 동등제어 전후의 z_{f1} 및 z_{r1}의 외란응답을 나타낸다.

그림 4 및 그림 5의 절선은 서스펜션 하부 질량 시스템에서 동등제어가 실행되지 않는 경우의 응답이며, 실선 부분이 제어가 실시되었을 동등 서스펜션 시스템의 응답이다. 그림의 결과는 외란에 적절히 대응하는 본 연구의 강인제어방법이 노면외란에 유효함을 나타내고 있다. 그림 6과 그림 7에 (3)식에서의 z_{f2} 및 z_{r2}의 제어 전후 노면변의 외란응답을 나타낸다. 그림의 결과 역시 외란에 적절히 대응하는 본 연구의 유효성을 나타내고 있다 (절선, 실선은 각각 제어 전후).
그림8 및 그림9에 지능형 제어시스템 설계로 구현한 제어입력 \(U_f, U_r \)를 나타낸다. 일정주행속도 60km/h로 주행할 경우, 전부 제어입력 \(U_f \) 발생 후 약 0.17sec 후에 그림9와 같은 후부 제어입력 \(U_r \)이 입력된다.

마지막으로 그림10과 그림11에 외란역제성능의 상하 및 피칭 노면저항 응답결과를 나타낸다. 그림들의 결과는 본 연구의 지능형 동정현가제어방법이 들출외란의 내외란성 향상에 크게 유효함을 나타낸다. 특히 피칭제어응답에 본 연구의 외란역제성능에서의 유 효성을 잘 나타내고 있다.

IV. 결 론

본 연구에서는 정상속도 주행상태의 차량을 자동화시킴으로 모델링하여, 전륜 및 후륜의 위치와 주행속도 관계에 따른 동정현가시스템을 해석하여 시간차 외란입력에 대하여 빠른 응답성과 높은 정도의 제어가 가능한 지능형 동정 현가 제어시스템의 설계 및 적용방법에 관한 고찰을 하였다.

대상시스템의 운동방정식 및 상태공간표현에 관해 고찰하고 시간차 제어입력 컨트롤러의 중요성에 대하여 살펴본 다음, 정상속도 주행 시의 들출외란에 대한 동정 현가 제어시스템을 설계, 적용하여 본 연구의 유효성에 관하여 논하였으며, 차체 상하 및 피칭제어에 있어서 수치 시뮬레이션을 통하여 본 연구의 내외란성향상에 대한 유효성을 보였다.

그림8 및 그림9의 결과는 본 연구의 지능형 동정 현가 제어시스템 설계가 기존의 전후부 동일제어입력보다 차별적으로 전부 제어입력값보다는 다른 보정된 후부 제어입력값을 나타낸 것을 보여준다. 특히 그림10과 그림11의 결과는 본 논문에서의 시간차 외란입력을 고려한 지능형 동정 현가 제어시스템 설계법이 승차감향상 및 피칭제어에 효과적임을 보여준다.
Fig 11. Road Disturbance Pitch Response θ

참고문헌

