이동카메라에서 이동물체 검출을 위한 참조 영상 생성에 관한 연구

이준형*, 채옥삼**

A Study of Reference Image Generation for Moving Object Detection under Moving Camera

June-Hyung Lee *, Ok-Sam Chae**

요 약

본 논문에서는 이동 카메라에서 조명 변화에도 강건한 이동 물체 자동 검출을 위한 파노라미 참조 이미지를 생성하는 방법을 제시한다. 배경 영상은 삽각대 위에 고정시킨 카메라를 수평방향으로 회전하여 얻은 영상을 정렬시켜 재구성하여 만든다. 실린더 파노라미 영상의 생성에 있어서, 기존의 방법들은 정적인 환경을 가정하고 있다. 본 논문에서는 동적인 환경들로부터 파노라미 참조 이미지를 생성하는 방법을 제안한다. 입력영상과 배경영상 상간의 예지 매칭 방법과 누적 예지 매핑을 사용하여 파노라미 참조 이미지 생성을 위한 효율적 방법을 제시한다. 제안한 알고리즘을 실제 영상 영역에 적용하여 보았다. 실험결과 제안한 방법을 사용하여 조명 변화에도 강건한 파노라미 참조 이미지 생성이 가능함이 입증되었다.

Abstract

This paper presents a panoramic reference image generation based automatic algorithm for moving objects detection robust to illumination variations under moving camera. Background image is generated by rotating the fixed camera on the tripod horizontally, aligning and reorganizing this images. In generation of the cylindrical panoramic image, most of previous works assume the static environment. We propose the method to generating the panoramic reference image from dynamic environments in this paper. We develop an efficient approach for panoramic reference image generation by using accumulated edge map as well as method of edge matching between input image and background image. We applied the proposed algorithm to real image sequences. The experimental results show that panoramic reference image generation robust to illumination variations can be possible using the proposed method.

Keyword : 이동 물체(Moving Objects), 실린더 파노라미 이미지(Cylindrical Panoramic Image)
I. 서 론

많은 방법들이 배경 모델링을 위해 사용되어왔다. 이런 방법들은 대부분은 고정된 카메라이션을 다루지만, 이동 카메라이를 통해 구한 이미지에 대한 좋은 출력을 얻을 수 있다. 간단한 방법들로서는 특정 위치에 있는 목표 갤들의 평균을 구하는 방법, 한 위치에 있는 모든 갤들의 평균값을 구하는 방법, 외곽점(outlier)의 영향을 줄이기 위해 공간적 가중치 값을 적용하는 방법 등이 있다. Rüdiger et al.(6)은 간단 필터 기반 배경 모델링을 사용한다. 각 필터는 칼만 필터를 사용하여 모델에 배경의 일부로 가설해진다. 이차 및 프레임에서 빠르게 갱신한다. 이는 간단한 배경이나 단일 모드(multi-modal) 배경에 적합하지 않다. 또한 파노라믹 이미지의 생성을 위한 이미지 모자이징(mosaicing) 기법에 관한 많은 연구가 있었다(3)(4)(7)(10)(11)(12). 이 방법은 특정 영역이 고정된 영역의 영역에 대한 많은 영역이 가정되었으나, 이것은 카메라의 중심축을 기준으로 하는 것이다. 본 논문에서는 운동 시차(motion parallax)가 많다고 가정하였으며, 이것은 카메라의 중심축을 기준으로 한다. 본 논문에서는 운동 시차가 있는 가정을 따른다. 일반적으로 이미지 모자이징 기법은 정적 장면을 가정하는데, 이동 물체가 존재하면 두 가지 면에서 문제가 발생한다. 첫째, 이동 물체는 이미지들이 정렬(align)되는데 부정확한 정보를 제공함으로 이미지 레이스터라이션을 실패하게 할 수 있다. 결과적으로 좋은 결과를 얻지 못할 결과를 가져온다. 파노라믹 이미지를 생성하는데 있어서 이동 물체가 존재하는 경우의 두 번째 문제점은 이동 물체의 일부를 포함할 수도 있다는 것이다. 이러한 문제점은 해결하기 위해 파노라믹 이미지를 생성하기 위한 이미지 모자이징 기법과 광각 감시의 기초가 되는 배경 영상 생성 기법을 결합하고자 한다. 제안한 방법은 군 사시설이나 무인주택, 주차장과 같은 동적 이외 환경에서 이동 물체를 식별하는데 사용될 수 있는 광역 감시 영상을 생성한다. 본 논문의 구성은 다음과 같다. 2장에서는 실린더 파노라마 영상을 생성하기 위한 방법을 설명하고, 3장에서는 제안한 파노라마 영상 생성기 위한 방법을 설명한다. 4장에서는 제안된 알고리즘을 적용한 결과를 보여주고, 5장에서 결론을 맺는다.

II. 파노라마 영상 생성

컴퓨터 그래픽스, 컴퓨터 비전등의 분야에서 파노라마 이미지의 생성에 관한 많은 연구가 있었고, 파노라마 이미지의 생성에 대한 많은 연구가 있었고, 파노라마 이미지의 생성에 대한 많은 연구가 있었다. 파노라마 이미지의 생성은 사각형을 확대하고 이미지 해상도를 확장시킬 수 있는 장점을 갖는다. 간단히 서키먼이나 파노라믹의 이미지를 이용해 큰 파노라믹 영상을 생성하기 위해서는 실린더 배경과 같은 변환 모델이 필요하다.

2.1 실린더 파노라마 영상 생성 방 법

실린더 파노라마는 구형 파노라마에 비해 비교적 구조가 간단하기 때문에 일반적으로 많이 사용된다. 실린더 파노라마를 만들기 위해, 일반의 이미지를 삼각대위에 설치한 카메라의 회전을 통해 구하였다. 이러한 방법에는 카메라 설치와 조작이 카메라의 이동시키며 영상의 횡단하는 방법에 비해 간편하지만, y축 이외의 다른 방향으로 카메라를 회전시키는 경우, 이 방법에 의해 얻은 영상들의 중심 영역의 실제 크기는 다를 수도 있다. 한편, 시야(POV)나 카메라 좌표거리를 할 수 있다, 각 좌표(perspective) 이미지는 실린더 좌표로 위평(warping)될 수 있다. 실린더 파노라마를 만들어 주기 위해, 영상 좌표 p(x, y)는 수식(1)을 사용하여 2D 실린더 좌표 좌표(θ, ρ)로 실린더 투영(projection) 시킨다(13). 단, θ는 수평 방향 회전각이고 ρ와 ρ는 각각 초점거리와 스케일 라인이다.

\[\theta = \tan^{-1}(x/f), \quad \rho = y/\sqrt{x^2 + f^2} \]

\((\text{수식 1})\)

각 임의 이미지가 위평 되었으면 파노라믹 모자이크 이미지 를 구현하는 것은 순수 이동 변환 문제가 된다. 이상적으로, 수평 방향 이동 이미지 시연으로부터 실린더 파노라마를 만들기 위해서는 수평 회전각만을 구하면 된다. 적은 수직
방향 이동 운동 요소가 수직 방향 움직임을 보상하는데 필요하다. 수평 방향 이동 운동 요소 t_x와 수직 방향 이동 운동 요소 t_y가 각 입력 이미지에 대해 예측된다. 이동 운동 요소를 구하기 위해, 두 이미지간의 밝기 값 차를 최소화시키기 위해 수식(2)와 같이 $\delta t = (\delta t_x, \delta t_y)$를 예측한다. 단, $X_i = (x_i, y_i) X_i' = (x_i', y_i') = (x_i + t_x, y_i + t_y)$는 두 이미지의 대응점들이고, $t = (t_x, t_y)$는 모든 폭스들이에 대해 동일한 전역 이동 운동 필드이다.

$$E(\delta t) = \sum_i [L_i(X_i' + \delta t) - L_i(X_i)]^2 \quad \quad \text{(수식 2)}$$

일차테일러급수를 계산한 다음, 위 식은 수식(3)과 같이 된다. 즉, $e_i = L_i(X_i') - L_i(X_i)$는 현재 밝기 값 차이고, $g_i T_i = \nabla L_i(X_i')$는 X_i'에 있는 L_i의 이미지 경사 (gradient)값이다.

$$E(\delta t) \approx \sum_i [g_i T_i \delta t + e_i]^2 \quad \quad \text{(수식 3)}$$

이 최소화 문제는 수식(4)와 같은 최소 자승 해를 갖는다.

$$\left(\sum g_i g_i^T \right) \delta t = - \left(\sum e_i g_i \right) \quad \quad \text{(수식 4)}$$

(그림 1)은 이와 같은 이동 정렬(translational alignment) 기법을 사용하여 만들어진 실란더 파노라마 모자의 이미지를 보여준다.

![그림 1. 실란더 파노라마 영상](Fig 1. Cylinder Panoramic Image)

III. 예지 정합을 통한 참조 영상 기반

본 논문에서는 이동카메라 환경에서 이동물체 감출을 위한 참조 영상 정합을 위해 새로운 입력되는 영상에 대한 배경 예지 영상의 정합을 수행한다. 배경 영상에 대한 특정 패턴을 추출하고 입력 영상에서 대표 패턴을 추출한 다음, GHT (Generalized Hough Transform) 기법을 사용하는 경합 방법을 이용하여 배경 위치를 찾는다(14)(15). 배경 위치에 대응하는 배경 예지 영상과 입력 예지 영상에 대한 누적 예지 영상을 이용해 참조 영상을 생성한다.

3.1 배경예지에 대한 특정 패턴 추출

GHT를 수행할 때, 적선 부분은 누적 셀(Accumulator Cell)을 이용하면 작은 값들이 축적되어 비효율적이고 인산망을 증가시킨다. 이러한 GHT의 비효율성을 해결하기 위해 패턴에서 적선 구분 능력이 좋은 부분 예지들 특정 패턴으로 선정하여 예지 배칭을 한다. 먼저, 입력 영상에 대해 캐니 예지 감출을 적용하여 예지들을 추출한다. 특정 패턴을 생성하는 자세한 과정은 다음과 같다.

1) 예지 리스트에 있는 한 화소 pi의 좌, 우 일정 거리 내의 이웃 예지 화소와 pi로 이루어진 백터들 (ui, vi)을 구한다. (ui, vi)의 평균벡터 (U, V)의 사직각 θ를 구한다. 예지 pi에서 백터 (U, V)의 사직각 θ의 극선은 아래와 같다.
\[p_i = \text{예제 리스트의 } i\text{-번째 화소} \]
\[u_j = p_{i-j} - p_i \quad (1 \leq j \leq n, \ n\text{은 구간 크기}) \]
\[v_j = p_{i+j} - p_i \]
\[U = \frac{1}{n} \sum_{j=1}^{n} u_j, \quad V = \frac{1}{n} \sum_{j=1}^{n} v_j \]
\[\theta = \cos^{-1} \left(\frac{U \cdot V}{\|U\| \|V\|} \right) \]

2) 평균벡터 \((U, V)\)의 사잇각이 임계치 이상이면 후보 코너점을 등록한다.
3) 모든 예제 리스트의 화소에 대하여 1)-2)를 수행한다.
4) 후보 코너점을 중에서 일정 크기의 영역 내에서 최소인 것을 코너점으로 선정한다. 코너점은 특정 패턴의 중심이 되는 화소이다.
5) 각 코너점을 중심으로 일정 크기의 좌, 우에 있는 이웃에서 화소들을 특정 패턴으로 선택한다.
6) 추출한 특정 패턴의 코너점의 사잇각을 이용하여 우선순위를 부여한다. 사잇각이 작을수록 높은 우선순위를 갖게 된다.

앞의 과정을 통해 선정된 특정 패턴은 폭이 큰 부분이 선택된다. 입력 영상에 특정 패턴 생성 알고리즘을 적용한 결과는 〈그림 2〉와 같다.

![그림 2. 특징 패턴 추출](image.png)

3.2 입력영상에 대한 대표 패턴 추출

GHT는 패턴의 크기, 최적 변화가 있거나 부분 패턴만 존재할 경우에도 검출이 가능하고 작은 형태 구분도 가능한 장점이 있다. 그러나 크기가, 최적 변화를 모두 고려하여 수행되기 때문에 계산량이 많은 문제점을 갖는다. 따라서 이 러한 문제를 해결하고 GHT의 패턴 구별력을 향상하기 위해 패턴에서 형태 변화가 많은 부분 에모지를 선별하여 사용한다. 입력 영상에서 형태의 변화가 많은 경우 추출되는 특정 패턴 또한 많아지게 될 것이다. 그러나 최소의 패턴을 이용하여 빠르게 찾아가는 예의 위치 정보를 얻어 하므로 추출된 패턴 중에서도 일부만을 이용한다. 작은 양의 계산으로 신뢰도가 높은 결과를 얻기 위하여 특징 패턴 중에서도 우선순위가 가장 높은 것을 선택한다. 그러고 이 패턴과 위치상으로 멀리 떨어진 것을 선택하여 GHT 수행에 이용한다. 두 패턴의 거리는 멀어져 전체 영상에 대해 신호할 수 있는 메소를 수행할 수 있다. 이때에 이용되는 특징 패턴들은 어느 한 영역에 집중되지 않고 대략적인 전체 형태 정보를 유지할 수 있도록 선정하는 것이 중요하다. 그러므로 전체 패턴을 여러 영역으로 나누어 영역별로 앞서 정한 우선순위가 가장 높은 특정 패턴을 선정하여 대 표 패턴으로 정한다. 영역을 나누는 기준은 전체 패턴의 중심 포인터와 각 코너점으로 이루어진 밸러시의 각도 크기별로 영역을 나누어 전체 패턴의 정보를 가질 수 있도록 한다. 〈그림 3〉는 대표 패턴을 추출한 예이다.

![그림 3. 대표 패턴 추출](image.png)

3.3 GHT를 이용한 예의 정합

예의 정합에 사용할 예의에는 GHT의 임의 형태 패턴 표현 방법의 참고 태이블을 이용하여 표현한다. 또한 GHT 수행시 누적표를 이용하여 잠시에 민감한 기존 방법들의 문제를 해결하고자 한다. 앞에서 설명한 방법에 의해 대표 패턴을 구한 다음 새로운 입력되는 영상에 대한 모자리 예의 영상과 파노라믹 배경 예의 영상에 대해 GHT를 기반으로 하는 예의 정합 방법을 이용하여 예의 위치를 찾는다. 〈그림 4〉는 예의 정합의 결과를 보여준다.
특성정보도 함께 동록한다. 먼저, 새로 입력되는 영상에 에지 인산자를 적용하여 경사 크기(gradient magnitude)를 구한다. 경사크기를 최대값이 7이 되도록 양자화를 수행하여 배경이나 약한 에지를 제거한다. 앞서 설명한 모자이크 알고리즘을 통해 실린더 투영을 수행한다. 같은 방법으로 모든 학습 영상에 대해 실린더 투영을 수행하여 초기 배경매핑지를 구한다. 이어서, 새로 입력되는 입력영상에 대해 앞과 같은 방법으로 양자화 과정을 수행하고 초기 배경 영상과의 매칭 위치를 구한다. 매칭된 두 영상에 대한 대응되는 값을 누산기(accumulator) 배열에 누적한다. 같은 방법으로 모든 입력 영상에 대한 누적을 수행한 다음, 에지 검출 알고리즘을 적용하여 에지를 추출하여 참조 영상을 생성한다.

IV. 실험 결과

제안한 방법에서는 실외 주차장과 같이 환경 변화가 심한 동적 환경을 실험 영상으로 대행하였다.

이러한 영상은 실외 환경에서 다양한 변화를 제공하며 배경 에지 생성 과정을 잘 보여 줄 수 있다. 따라서 주차장 이미지를 입력영상으로 모자이크를 이용해 이동 물체를 감시하기 위한 참조 에지를 생성한다. 그러나, 현재 이미지 모자이크를 위한 대부분의 방법들은 배경의 변화가 심한 환경의 경우 좋은 모자이크 이미지를 만들기 어려우다. 본 논문에서의 이미지 모자이크 방법은 현재 입력된 영상을 초기 배경 이미지와 에지 매핑을 이용하여 참조 에지에 누적하는 방법을 이용한다. (그림 6)은 파노라미 참조 에지 영상의 결과이다. (그림 6)의 (a) 입력 영상으로 (b)와 같이 배경 에지를 생성하고 계속하여 새로 입력되는 영상을 누적하 는 방법을 이용하여 (c)와 같이 참조 에지 영상을 만든다.

3.4 참조 영상의 생성

차 영상을 기반으로 하는 이동물체 감지 방법의 문제점은 조명 변화에 흔히적으로 적용할 수 있는 참고 영상의 생성이 어렵다는 것이다. 하지만 조명이 변화하여도 배경의 구조적인 정보는 변화하지 않는다. 에지 검출 알고리즘은 조명 변화에도 비교적 안정적으로 물체의 경계를 추출한다. 따라서 가능한 모든 동적환경에서 나타날 수 있는 모든 배경의 에지를 추출하여 구조적으로 표현한 초기 참조매핑지를 만든다. 참조매핑은 세그먼트 단위로 저장되며 각 세그먼트의
비경 이미지를 만들기 위한 가중치가 부여된 가우스 함수를 이용한 방법 등의 기존의 방법들이 비례 뿐 논문에서 제시된 알고리즘을 이용한 결과가 계산 속도와 결과 이미지의 질적인 면에서 향상될을 확인 할 수 있었다. 실험을 위한 환경은 영상처리 알고리즘 개발 도구인 "MTES"의 내부 함수로 알고리즘을 개발하였다. 예제 추출 알고리즘으로 Canny 방법을 사용하였다. 비경 이미지 경합을 위해서 여러 후보 중 대표 제안을 이용하여 후보를 뽑아게 선정하고 선택된 후보를 중 신뢰도가 높은 예제를 선정하여 예제 보정을 수행하였다. 이러한 비경 이미지 경합 방법은 작은 형태 정보의 차이도 감지할 수 있고 부분적인 입력 패턴으로도 효과적으로 수행될 수 있다.

VI. 결론

본 연구에서는 이동 카메라를 이용하여 얻은 영상에서 이동 풍경 자동 검출 알고리즘을 위한 참조 이미지 생성을 제시한다. 수평방향으로 만 회전하여 얻은 영상을 실린더에 투영하여 실린더 파노라믹 영상을 만든다. 주위 환경변화에 강한 파노라믹 참조 영상을 만드기 위해 앞서 작성한 실린더 파노라믹 영상과 새로 입력되는 영상간의 매칭 위치를 GHT를 이용하여 정확하게 찾았다. 매칭된 두 영상을 두 투영를 뉴턴 예제 방법을 이용하여 누락하여 참조 영상을 생성하였다. 제안한 알고리즘은 실제 영상에도 적용하였으며, 다양한 환경변화에서 오랫동안 관찰하여 누락된 예제 영상을 생성하고 이를 바탕으로 정확하고 재현한 참조 비경 이미지를 성공적으로 만들 수 있었다. 참조 영상의 생성에 있어서 제안한 방법은 기존의 방법에 비해 속도가 빠르고 생성된 참조영상의 결과도 질적인 면에서 향상된 결과를 보였다. 향후 동적환경에서 이동물체가 나타나거나 사라지는 경우를 참조에이지에 반영하여 참조 이미지를 자동 생성할 수 있도록 한다면, 참조가 검출과 같은 여러 감시 시스템에 이용할 수 있을 것이다.

참고문헌

저자 소개

이준형
1966년~현재: 경희대학교
 컴퓨터공학과 박사과정
1999년~현재: 국립정보과학원
전산공무원양성과 교수

채욱삼
e-mail: ochae@khu.ac.kr
1982년 오류라호마 주립대학 전기
및 컴퓨터공학(공학석사)
1996년 오류라호마 주립대학 전기
및 컴퓨터공학(공학박사)
선임연구원
1988년~현재 경희대학교 컴퓨터공학과 교수
관심분야: 멀티미디어데이터처리, 컴퓨터 데이터처리, 영상처리, Signal Processing 등