DOI QR코드

DOI QR Code

Mechanical Properties of Ti doped Amorphous Carbon Films prepared by CFUBM Sputtering Method

CFUBM Sputtering법으로 증착시킨 티타늄이 첨가된 비정질 탄소 박막의 기계적 특성 연구

  • 조형준 (성균관대학교 정보통신공학부) ;
  • 박용섭 (성균관대학교 정보통신공학부) ;
  • 김형진 (성균관대학교 정보통신공학부) ;
  • 최원석 (성균관대학교 정보통신공학부) ;
  • 홍병유 (성균관대학교 정보통신공학부)
  • Published : 2007.08.01

Abstract

Ti-containing amorphous carbon (a-C:Ti) films shows attractive mechanical properties such as low friction coefficient, good adhesion to various substrate and high wear resistance. The incorporation of titanium in a-C films is able to improve the electrical conductivity, friction coefficient and adhesion to various substrates. In this study, a-C:Ti films were depositied on Si wafer by closed-field unbalanced magnetron (CFUBM) sputtering system composed two targets of carbon and titanium. The tribological properties of a-C:Ti films were investigated with the increase of DC bias voltage from 0 V to - 200 V. The hardness and elastic modulus of films increase with the increase of DC bias voltage and the maximum hardness shows 21 GPa. Also, the coefficient of friction exhibites as low as 0.07 in the ambient. In the result, the a-C:Ti film obtained by CFUBM sputtering method improved the tribological properties with the increase of DC bias volatage.

References

  1. C. Corbella, M. Vives, A. Pinyol, E. Bertran, C. Canal, M. C. Polo, and J. L. Andujar, 'Preparation of metal (W, Mo, Nb, Ti) containing a-C:H films by reactive magnetron sputtering', Surf. Coat. Technol., Vol. 177-178, p. 409, 2004 https://doi.org/10.1016/j.surfcoat.2003.09.017
  2. Grill A. 'Diamond-like carbon coatings as biocompatible materials - an overview', Diamond Relat. Mater., Vol. 12, p. 166, 2003 https://doi.org/10.1016/S0925-9635(03)00018-9
  3. 최원석, 홍병유, 'MEMS 소자의 고체윤활박막으로 활용하기 위한 다이아몬드상 카본 박막의 트라이볼로지 특성 분석', 전지전자재료학회논문지, 19권, 11호, p. 1010, 2006 https://doi.org/10.4313/JKEM.2006.19.11.1010
  4. J. W. Zou, K. Reichelt, K. Schmidt, and B. Dischler, 'The deposition and study of hard carbon films', J. Appl. Phys., Vol. 65, p. 3914, 1989 https://doi.org/10.1063/1.343355
  5. D. R. Tallant, J. E. Parmeter, M. P. Siegal, and R. L. Simpson, 'The thermal stability of diamond-like carbon', Diam. Relat. Mater., Vol. 4, p. 191, 1995 https://doi.org/10.1016/0925-9635(94)00243-6
  6. H. Mori and H. Tachikawa, 'Increased adhesion of diamond-like carbon - Si coatings and its tribological properties', Surf. Coat. Tech., Vol. 149, p. 225, 2002
  7. C. Donnet, 'Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review', Surf. Coat. Technol., Vol. 100-101, p. 180, 1998 https://doi.org/10.1016/S0257-8972(97)00611-7
  8. T. Y. Leung, W. F. Man, P. K. Lim, W. C. Chan, F. Gaspari, and S. Zukotynski, 'Photothermal deflection spectroscopy and transmission measurements of a-C:H films', J. Non-Cryst. Solids, Vol. 254, p. 151, 1999 https://doi.org/10.1016/S0022-3093(99)00441-X
  9. J. Robertson, 'Hard amorphous (diamondlike) carbons', Prog, Solid State Chem., Vol. 21, p. 199, 1991 https://doi.org/10.1016/0079-6786(91)90002-H
  10. J. Robertson, 'Structural models of a-C and a-C:H', Diam. Relat. Mater., Vol. 4, p. 297, 1995
  11. H. E. Hintermann, 'Thin solid films to combat friction, wear, and corrosion', J. Vac. Sci. Technol. B, Vol. 2, p. 816, 1984 https://doi.org/10.1116/1.582883
  12. Hamilton G. M. and Goodman L. E., 'The stress field created by a sliding circular contact', J. Appl. Mech., Vol. 33, p. 371, 1966 https://doi.org/10.1115/1.3625051
  13. X. L. Peng, Z. H. Barber, and T. W. Clyne, 'Surface roughness of diamond-like carbon films prepared using various techniques', Surf. Coat. Technol., Vol. 138, p. 23. 2001 https://doi.org/10.1016/S0257-8972(00)01139-7
  14. Y. Liu, A. Erdemir, and E. I. Meletis, 'Wear-resistant metal-carbon composite coating' Surf. Coat. Technol., Vol. 128-129, p. 150, 2000
  15. S. Adachi, T. Arai, and K. Kobayasi, 'Chemical treatment effect of Si(111) surfaces in F-based aqueous solutions', J. App. Phys., Vol. 80, p. 5422, 1996 https://doi.org/10.1063/1.362729