DOI QR코드

DOI QR Code

Guaranteed Cost Control for Uncertain Time-Delay Systems with nonlinear Perturbations via Delayed Feedback

지연귀환을 통한 비선형 섭동이 존재하는 불확실 시간지연 시스템의 성능보장 제어

  • 박주현 (영남대학교 전기공학과) ;
  • 권오민 (충북대학교 전기공학과)
  • Published : 2007.06.01

Abstract

In this paper, we propose a delayed feedback guaranteed cost controller design method for linear time-delay systems with norm-bounded parameter uncertainties and nonlinear perturbations. A quadratic cost function is considered as the performance measure for the given system. Based on the Lyapunov method, an LMI optimization problem is formulated to design a controller such that the closed-loop cost function value is not more than a specified upper bound for all admissible system uncertainties and nonlinear perturbations. Numerical example show the effectiveness of the proposed method.

References

  1. S. Boyd, L. El Ghaoui, E. Feron, and V. balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994
  2. C. Gouding, Y. Maying, L. Yu, and C. Jian, 'Delay dependent guaranteed cost control for linear uncertain time-delay systems,' Proceedings of the 3rd World Congress on Intelligent Control and Automation, Hefei, P.R. China, pp. 3363-3367, 2000 https://doi.org/10.1109/WCICA.2000.863159
  3. D. Yue and S. Won, 'Delay-dependent robust stability of stochastic systems with time delay and nonlinear uncertainties.' Electronics Letters, vol. 37, pp. 992-993, 2001 https://doi.org/10.1049/el:20010632
  4. J. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993
  5. J. H. Kim, 'Robust guaranteed cost control of discrete-time uncertain systems,' IEICE Trans. Fundamentals, vol. E84-A, no. 8, pp. 2065-2069, 2001
  6. K. Gu, 'An integral inequality in the stability of time-delay Systems,' IEEE Conference on Decision and Control, Sydney, Australia, 2000 https://doi.org/10.1109/CDC.2000.914233
  7. K. Gu, 'A further refinement of discretized Lyapunov functional method for the stability of time-delay systems,' International Journal of Control, vol. 74, no. 10, pp. 967-976, 2001 https://doi.org/10.1080/00207170110047190
  8. K. Gu and S.-I. Niculescu, 'Further remarks on additional dynamics in various model transformations of linear delay systems,' IEEE Trans. On Automatic Control, vol. 46, no. 3, pp. 497-500, 2001 https://doi.org/10.1109/9.911431
  9. L. Yu and F. Gao, 'Optimal guaranteed cost control of discrete-time uncertain systems with both state and input delays,' Journal of the Franklin Institute, vol. 338, pp. 101-110, 2001 https://doi.org/10.1016/S0016-0032(00)00073-9
  10. L. Yu and J. Chu, 'An LMI approach to guaranteed cost control of linear uncertain time-delay systems,' Automatica, vol. 35, pp. 1155-1159, 1999 https://doi.org/10.1016/S0005-1098(99)00007-2
  11. O. M. Kwon and J. H. Park, 'An improved delay-dependent robust control for uncertain time-delay systems,' IEEE Trans. On Automatic Control, vol. 49, no. 11, pp, 1991-1995, 2004 https://doi.org/10.1109/TAC.2004.837563
  12. O. M. Kwon and J. H. Park, 'Robust stabilization of uncertain systems with delays in control input,' Applied Mathematics and Computation, vol. 172, pp. 1067-1077, 2006 https://doi.org/10.1016/j.amc.2005.03.008
  13. S. H. Esfahani and I. R. Peterson, 'An LMI approach to output-feedback guaranteed cost control for uncertain time-delay systems,' International Journal of Robust and Nonlinear Control, vol. 10, pp. 157-174, 2000 https://doi.org/10.1002/(SICI)1099-1239(200003)10:3<157::AID-RNC484>3.0.CO;2-K
  14. S. Oucherich, 'Global stabilization of a class of linear continuous time-delay systems with saturating controls,' IEEE Trans. On Circuits and Systems-I : Fundamental Theory and Applications, vol. 43, no. 12, pp. 1012-1015, 1996 https://doi.org/10.1109/81.545844
  15. S. S. L. Chang and T. K. C. Peng, 'Adaptive guaranteed cost control of systems with uncertain parameters,' IEEE Trans. On Automatic Control, vol. 17, no. 4, pp. 474-483, 1972 https://doi.org/10.1109/TAC.1972.1100037
  16. T. Mori, 'Criteria for asymptotic stability of linear time-delay systems,' IEEE Trans. On Automatic Control, vol. 30, no. 2, pp. 158-161, 1985 https://doi.org/10.1109/TAC.1985.1103901
  17. Y. H. Roh and J. H. Oh, 'Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation,' Automatica, vol. 35, pp. 1861-1865, 1999 https://doi.org/10.1016/S0005-1098(99)00106-5
  18. Y. S. Lee, Y. S. Moon, and W. H. Kwon, 'Delay-dependent guaranteed cost control for uncertain state-delayed systems,' Proceedings of the American Control Conference, pp. 3376-3381, 2001 https://doi.org/10.1109/ACC.2001.946150
  19. Y. S. Moon, P. Park, and W. H. Kwon, 'Robust stabilization of uncertain input-delayed systems using reduction method,' Automatica, vol. 37, pp. 307-312, 2001 https://doi.org/10.1016/S0005-1098(00)00145-X
  20. Z. H. Gua, C. W. Chan, Andrew Y. T. Leung, and G. Chen, 'Robust stabilization of singular-impulsive-delayed systems with nonlinear perturbations,' IEEE Trans. On Circuits and Systems-I: Fundamental Theory and Applications, vol. 48, no. 8, pp. 1011-1019, 2001 https://doi.org/10.1109/81.940192
  21. P. Gahinet, A. Nemirovskii, A. Laub, and M. Chilali, LMI Control Toolbox, Math Works, Natick, Massachusetts, 1995
  22. X. M. Zhang, M. Wu, J. H. She, and Y. He, 'Delay-dependent stabilization of linear systems with time-varying state and input delays,' Automatica, vol. 41, pp. 1405-1412, 2005 https://doi.org/10.1016/j.automatica.2005.03.009
  23. O. M. Kwon, J. H. Park, S. M. Lee, and S. C. Won, 'LMI optimization approach to observer-based controller design of uncertain time-delay systems via delayed feedback,' Journal of Optimization Theory and Applications, vol. 128, no. 1, pp. 103-107, 2006 https://doi.org/10.1007/s10957-005-7560-3
  24. W. H. Chen, Z. H. Guan, and X. M. Lu, 'Delay-dependent guaranteed cost control for uncertain discrete-time systems with delay,' IEE Proceedings-Control Theory and Applications, vol. 150, no. 4, pp. 412-416, 2003 https://doi.org/10.1049/ip-cta:20030572
  25. W. H. Chen, Z. H. Guan, and X. M. Lu, 'Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems,' Automatica, vol. 40, no. 7, pp. 1263-1268, 2004 https://doi.org/10.1016/j.automatica.2004.02.003
  26. W. H. Chen, Z. H. Guan, and X. M. Lu, 'Delay-dependent guaranteed cost control for uncertain discrete-time systems with both state and input delays,' Journal of the Franklin Institute. vol. 341. no. 5, pp. 419-430, 2004 https://doi.org/10.1016/j.jfranklin.2004.04.003
  27. Y. S. Lee, O. K. Kwon, and W. H. Kwon, 'Delay-dependent guaranteed cost control for uncertain state-delayed systems,' lnternational Journal of Control, Automation, and Systems, vol. 3, no. 4, pp. 524-532, 2005
  28. Z. Zuo and Y. Wang, 'New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations,' IEE Proceedings-Control Theory and Applications, vol. 153, no. 5, pp. 623-626, 2006 https://doi.org/10.1049/ip-cta:20045258
  29. O. Kwon, S. Won, and D. Yue, 'Delayed feedback guaranteed cost controller design for uncertain time-delay systems,' IEICE Trans. Fundamentals, vol. E86-A, no. 9, 2413-2417, 2003