LQR Controller Design with Pole-Placement

극배치 특성을 갖는 LQR 제어기 설계

  • 박문수 (아주대학교 전자공학과) ;
  • 박덕기 (아주대학교 전자공학과) ;
  • 홍석교 (아주대학교 전자공학과) ;
  • 이상혁 (아주대학교 전자공학과) ;
  • 박민호 (아주대학교 전자공학과)
  • Published : 2007.06.01


This paper deals with LQR controller design method tor system having complex poles. The proposed method is capable of systematically calculating weighting matrices based on the pole's moving-range and the relational equation between closed-loop pole(s) and weighting matrices. The method moves complex poles to complex poles or two distinct real poles. This will provide much-needed functionality to apply LQR controller. The example shows the feasibility of the proposed method.


  1. O. A. Solheim, 'Design of optimal control systems with prescribed eigenvalues,' Int. J. Control, vol. 15. pp. 143-160, 1972
  2. M. Saif, 'Optimal linear regulator pole-placement by weighting selection,' Int. J. Control. vol. 50. No. 1, pp. 399-414, 1989
  3. B. D. O. Anderson, J. B. Moore, Optimal Control, Prentice-Hall, 1989
  4. T. Fujinaka and H. Shibata, 'Admissible region for pole positioning with optimal regulator,' Proc. IEEE CDC, Kobe, japan, pp. 3631-3635, 1996
  5. T. Fujinaka and S. Omatu, 'Pole placement using optimal regulators,' TIEE japan, vol. 121-C, pp. 240-245, 2001
  6. 박민호, 홍석교, 'LQR 제어기의 과도 상태 개선 방법에 관한 연구,' 대한전기학회 하계학술대회 논문집, pp. 2239-2241, 2004
  7. 박민호, 홍석교, 이상혁, '근의 이동범위를 고려한 LQR 제어기 설계,' 제어. 자동화.시스템공학 논문집, 제 11 권 제 10 호, pp. 864-869, 2005
  8. A. P. Sage, C. C. White, Optimum System Control, Prentice-Hall, 1977
  9. K. Ogata, State Space Analysis of Control Systems, Prentice-Hall, pp. 119-120, 1967
  10. G. Strang, Linear Algebra and its Applications, 3rd Ed. Harcourt Brace & Company, pp. 339-340, 1988