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OSCILLATION AND NONOSCILLATION
OF HIGHER-ORDER DIFFERENCE EQUATIONS
WITH NONLINEAR NEUTRAL TERMS f

ZHENGUO ZHANG*, A1JUN YANG* AND CONGNA Dr***

ABSTRACT. In this paper, the oscillation and existence of nonoscillatory solutions
of odd order difference equations with nonlinear neutral terms are studied respec-
tively. Some new criteria are established. Furthermore, some examples are given to
illustrate the advance of our results.

1. INTRODUCTION

Consider the higher-order difference equations of the form

(1.1) A™zn — 9(Xn—r)) + (0, 2n—s) =0, n > nyp,

(1.2) A™(zn — Png(Tr,)) + @h(Zs,) =0, n > ng,

where A is the forward difference operator defined by Az, = z,.1 — T, and for
i > 1, A' is the i** order forward difference operator Az, = A(ATz,). The
following conditions are always assumed to hold for Eq.(1.1) and (1.2):
(a) m > 1 is an odd integer;
(b) g, he C(R, R), f € C(N(ng) xR, R);
(c) 7, o are nonnegative integers, {7,} and {o,} are integer sequences, and
lim 7, = lim o, = oc;

n—.

n—o0 o0
(d) {pn} and {g,} are real sequences.

The peutral delay difference equations arise in a number of important applica-
tions including problems in population dynamics when maturation and gestation are
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included, in cobweb models in economics where demand depends on current price
but supply depends on the price at an earlier time, and in electrical transmission in
lossless transmission lines between circuits in high speed computers.

Oscillation theory of neutral difference equations has developed very rapidly in
recent years. It has concerned itself largely with the oscillatory and nonoscillatory
properties of solutions (see [I-15] and the rcferences cited therein). Agarwal and
Wong [2], Agarwal et al. [3], Agarwal and Grace [4], and Zhang and Yang [9] inves-
tigate the oscillatory behavior of solutions of nonlinear neutral difference equations
of order m(> 1) of the following form

(1'3) Am(xn + CTp_k) +pnf(xn—r) =0 for n > ny.

Liu, Wu and Zhang [15] has studied the oscillation of solutions of even order differ-
cnce equations with nonlinear neutral term of the form

(1.4) A" HanA(zy + @(n, 7)) + @nf(Tgn) =0 for m is even.

Whereas it seems that the odd order difference equations with nonlincar neutral
terms received much less attention, the purpose of this paper is to establish some
criteria for the oscillatory and nonoscillatory properties of Eq.(1.1) and Eq.(1.2).
Some examples are given to illustrate our results.

Let v = max{r, o} (y = 7?;112) {7n: on}), and ng be a fixed nonnegative integer.
By a solution of Eq.(1.1) (Eq.(1.2)) we mean a recal sequence {z,} which is defined
for all n > ng > 7 (n > v), and satisfies Eq.(1.1) (Eq.(1.2)) for n > ng. A solution
{zn} of Eq.(1.1) (Eq.(1.2)) is said to be nonoscillatory if all terms x,, are eventually
of one sign. Otherwise the solution {z,} is called oscillatory. In this paper, we shall
be concerned only with the nontrivial solution of Eq.(1.1) (Eq.(1.2)).

The plan of the paper is as follows. In Section 2, we present preliminary lemmas
that are needed to prove our main results, and in Section 3, we obtain some sufficient
conditions for the oscillation of Eq.(1.1) and (1.2). Finally, in Section 4, we establish
the existence of nonoscillatory solutions of Eq.(1.1) and (1.2). Examples are inserted
to illustrate the results.

2. RELATED LEMMAS

To obtain our main results, we need the following lemmas.

Lemma 2.1 ([6]). Let y, be a real function defined on N(ng) = {ng, no+1, ---},
if yn > 0 with A™y, < 0, then there exists an integer k, 0 < k < m with (m+ k)
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odd and ny > ny sufficiently large, such that

ANy, >0 foralln>ny, j=0,1,--, k

(2.1) (=1)™HHAIy, S0 foralln>ng, j=k+1, -, m.

Lemma 2.2. Let y, be a real function defined on N(ng) = {ng,no +1,---}, if
Yn > 0 with A™y, < 0, and {yn} is bounded, then there exists an integer n1 > ng
sufficiently large, such that

(_1)m+J+1A]y'n, > 0 fOT all mn 2 n1, j = 1, e ,m
and
(2.2) lim Ay, =0 forj=1,2,---,m—1.
n—oo

Lemma 2.3. Assume p € (0, 1], ¢ € (0, 00), 7 is a positive integer and o is a
nonnegative integer, m is odd, and every solution of the equation

(2.3) A™(Tp — pTn_r) + qTn_s =0

is oscillatory. Then there exists an g9 > 0 such that for any € € (0, &g, every
solution of the equation

(2.4) A™yn — (P = €)Yn—r) + (@ —E)Yn—0 =0

is oscillatory.

Proof. If not, for any 5 > 0 there exists an ¢ € (0, gg] such that (2.4) has an
eventually positive solution. Then the characteristic equation of (2.4)

(2:5) JA) =A-1)"l-(p-A]+(g—er" =0

has a real root Ag € (0, 1]. On the other hand, by the assumption, the characteristic
cquation of (2.3)

(2.6) FO)=MA-1)™1-pA") +gA™" =0

has no root on (0,1]. Since /{in%)F()\) = +o00, F(1) = ¢ > 0, F(A\) has a positive
lower bound on (0, 1], i.e. there exists { > 0 such that F(A\) > [ > 0 for any X € (0, 1].
Set

G =(-1m(1- ’5’,\-7) + gx“ for A € (0, 1).
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Since Il\in% G(XA) = +o00, there exists a A € (0, 1), such that G(X) > 0 for A € (0, Aq].
Choose € > 0 such that p— €9 > §, g — 59 > £, and
g- sup [(1—A)"A77+279 <
Ae(Ag, 1]

Thus for € € (0, &g}, if A € (0, A;], then

FA=GA-10"1-@~eA+(@-eAr™

> (-1 (1- gx\_T) + g,\—” =G() >0

8| e~

if A € (A, 1], then

fA=A-1D)"1-(p-e)A7"]+(g—e)A™°

>F(A)—¢€o- sup [(1—A)"A77 +279)
€(r, 1)

I 1
> - o =2
>1 5 2>()

That is, there exists an gp > 0 such that (2.5) has no real roots on X € (0, 1] for

cvery € € (0, €], we reach a contradiction. This completes the proof of Lemma
2.3. O

Lemma 2.4. Suppose that m is odd, f € C(N(ng) x R, R) is nondecreasing,
zf(n,z) > 0 for z € R, and o is a nonnegative integer. Then every solution of
equation

(2.7) Ay + f(n,zpy—6) =0
15 oscillatory if and only if

(2.8) A™yn + f(n,2p—6) <0
has no eventually positive solutions, and

(2.9) AMyn + f(n,zpn_s) >0
has no eventually negative solutions.

Proof. The sufficiency is obvious. To prove the necessary, without loss of gener-
ality, we assume that (2.8) has an eventually positive solution y,. Thus A™y, <
—f(n,yn—s) < 0. According to Lemma 2.1, there exists an even integer k such that
0<k<m-1,and (2.1) holds.
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(D). If k = 0, choose N sufficiently large, for any n > N, summing (2.8) m times
from n to oo, we have

(210) 2 g D (s =t m = D™D o,y

Let BC be a partially ordered Banach Space of all real sequences defined on N(ng).
Set

Q={x={xn}€BC: 0 <z, < yn, nEN(nO)}.
Now we define operator I" on  as follows

o0

Py = @ L —ntm=1"Df(s0,,), n2N
Tz, ng<n<N.

It is easy to see from (2.10) that I'Q? C Q. Since f is nondecreasing. I' is increasing

in z, i.e. if £y < Yy, then 'z, < Ty,. Therefore, by Knaster’s fixed point theorem,

there exists z € , such that

1

N m Z(s —nt+m-= 1)(m_1)f(s> ms—g) forn > N.

s=n

In

We see that z, is an eventually positive solution of (2.7), this is a contradiction.
(I). If 2 <k <m—1, summing (2.8) m ~ k times from n to co, we have

(m — ]]‘:7 - 1! Z(S -n+m-—k- 1)(m_k_1)f(says—a)'

(2.11) OFyy >
Summing (2.11) & times from N to n — 1, we have

1
E—1)(m—-k-1

n—1
ynZyN+( )'z(n—s+k—2)(k‘1)
" s=N

(2.12) -
X Z(u —stm—k- 1),y ,),

u=s )
where N > ng sufficiently large such that yx > 0. It is similar to the proof in (I),
we can obtain that the corresponding equation of inequality (2.12)

1 n—1
= — -2 (k~1)
on yN+(k—1)!(m—k—1)!Z—;V(n s+k-2)

oo
X Z(u —s+m—k-1)™F Dz, )
u=s

has an eventually positive solution z,. Clearly, z, is an eventually positive solution
of (2.7), which is a contradiction. This completes the proof of Lemma 2.4. O



54 ZHENGUO ZHANG®, AIJUN YANG™ AND CONGNA D1r***

3. OSCILLATION

Theorem 3.1. Assume that

(i) g is nondecreasing, zg(zx) > 0 for x € R, and there exists an o € (0, 1) such
. le@)l _ | Me[0,00) forae(0,1)
that lim = { ce (0, 1) fora =1,
(i) fis nondecreasing in z, zf(n, ) > 0 for (n, ) € N(ng) x R, and for any

|z}—00
nonzero constant 3

o
E s(m_l)f_(s, B) = 0o - signB;

s=ng

(iii) there exists a positive integer M, such that every solution of equation

(31) ATy, + F(n, Yn—o + I Yn—o—7 + 9WYn—g—2r + -+ + g(yn—U—MT) ..)))=0
is oscillatory.

Then every solution of Eq.(1.1) is oscillatory.

Proof. We prove it for the case that @ € (0, 1) in condition (i). The case that
a =1 can be proved similarly. Assume the contrary, let z, be an eventually positive
solution of Eq.(1.1). Set

(3.2) Yn = Tn — 9(Tn-7).

Then eventually

(3.3) Ayn = —f(n, Tn—s) < 0.

Therefore, y, is constant sign eventually. Now let us consider the following two
cases: y, < 0 and y, > 0 eventually.
(I). Assume y, < 0 eventually. Since m is odd, it follows from (3.3) that Ay, <

0. In fact, if A'y, > 0 and A"y, > 0 for some i = 1,2, ---, m — 2, then
Yn > 0 eventually, that is a contradiction. If Ay, < 0 and Ay, < 0 for some
i =23, --,m—1, then Ay, < 0 eventually. If Ay,  A**ly, < 0 for i =
1,2,---,m—1, since m is odd, Ay, < 0. Then either
(3.4) lim y, = —o0

n—>2
or

(3.5) lim y, = —r € (—o0, 0).
n—0
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If (3.4) holds, from (3.2) we have lim g(x,—,) = oo, and so z, — 0o as n — 00
from condition (i). This implies thazzlire exists an infinite sequence {ny} such that
klln;o Zp, = 00, Where z,, = max{z, : np <n < ni}. Hence from condition (i) and
(3.2) we have

—a_ 9(@ny-7)
Ynp = Ty, — g(mnk—‘l’) = (E%k [xika - n: .
(L'nk

9(zn,)

> o :L,l—a _
Ny :U%k

" } — 00 as k — o0,
which contradicts (3.4) and so (3.5) holds, i.e. {y,} is bounded. Thus we have

From (3.5) there exists a n; > ng sufficiently large, such that y, = z, — g(zp—1) <
—5 forn > ny. Sog(wn_r) > 5 > 0 for n > ny. Since g is nondecreasing in z,
there exists a 8 > 0, such that z,, > 3 for n > n;. Since f is nondecrcasing in z, we

have
(3.7) A"y = —f(n, Zn-o) < —f(n, 8) forn>n; +o.
Multiplying (3.7) by n(m“l), and summing it from n; + ¢ to n — 1, we obtain that
n—1
(38) F(n)-Fny+0) <= Y s Vf(s.6)
s=ny+o

where

m—1 . ' )

Fln) = 3 (-1)i(Anm=10)Am=i-y,

1=0

In view of (3.6), we have F(n) > 0, Thus
n-1
—F(ni+0) <~ Z sm=D (s, 8).
s=nj+o

By condition (ii), we have
—F(n1+0) = —00 as n— oo.

This is a contradiction.
(II). Assume yn, > 0 eventually. Then from (3.2) we have

Tn = Yn + §(Ta—1) = Yn + 9(Un—r + g(Tn—2r))
2 Yo+ g(Yn—r + g(yn——ZT +-- +g(yn—M-r) ).
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Substituting this into Eq.(1.1), we find that

Amyn + f(na Yn—0o T g(yn—a—f + .g(yn—-a—QT +- 4+ g(yn—a—M’r) .- ))) <0,

which contradicts condition (iii) by Lemma 2.4. By the same method we can prove

Eq.(1.1) has no eventually negative solutions. O

Example 3.1. Consider

1 ne
(39) A"n(-ll;n e CL';;__3) + 3 . 2m_16(_1) lmn—2ezn._2 = 0

N =

Here, m > lis odd, 7 = 3, 0 = 2, and g(z) = %x%, f(n,z) =3 2m 11" ez,
Choose o = %, we can show that the conditions of Theorem 3.1 are all satisfied.
Therefore, every solution of Eq.(3.9) is oscillatory. In particular, z, = (—1)" is an
oscillatory solution of the equation.

Theorem 3.2. Assume that
(i) m=n-7, op=n—o

(i) 0 < lim pp, =p < 1, liminfg, =¢ >0, lim -2 =[>0, and pl < 1;
n—00 n—oo0 n—oo In—-1

'n

(iii) zg(x) > 0 for z #£0, |g(z)| < |z| as |z| sufficiently large, and

lim, M =1;
z—0 X

(iv) zh(z) >0 forz £ 0, |h{z)] > h > 0 as |z| sufficiently large, and

lim —= h(z) =1;
z—0 X

(v) every solution of the linear difference equation
(3.10) A™(Yn — Plyn—r) + qyn—0 =0
is oscillatory.

Then every solution of Eq.(1.2) is oscillatory.

Proof. Assume the contrary, let , be an eventually positive solution of Eq.(1.2).
Set

(38.11) Yn = Tn — Png(Tn—r).

Then eventually A™y, = —g h(zp-o) < 0, therefore hm A™ly, =1 < o0 Ifl =

—00
—00, then lim y, = —o0, thus from (3.11), {z,} is unbounded ie. hm Sup Zp, = 00,
n—00 n—oo
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and there exists an infinite sequence {n;} such that klim Tn, = 00, where z,, =
— 00
max{z, : np < n < nx}. Hence from (3.11) and conditions (ii) (iii), we have

9(zp, -
Yng = Tny, _pnkg(mnk—T) =Tn, — Png - Mxnk—f
Tny—1

2> Zn,[1— (p+e0)] — o0 as k — oo,
where g > 0 and 0 < p + g9 < 1, which contradicts | = —co. Therefore, I € R.
Then summing Eq.(1.2) from n; to co we find that

(3.12) i gsh(zs—s) < 00,

§=n
which implies that lim inf 2, = 0. In fact, if not, then g,h(z,—,) has a positive lower
bound, which contrgaioc?us (3.12). Thus there exists an infinite sequence {ny} such
that kli)n;o Zn, = 0, then klingo Yn, < 0. On the other hand, from (3.11) and condition
(iil), we have
g(xnk)

Nk

Ynptr 2 _pnk-}-'rg(xnk) = —Pny+1 Zn, — 0 as k — co.

Since yy, is monotonic, we have limp oo Y, = 0. Then from Lemma 2.2, it is casy to

see that
(3.13) lim Ay, =0 for 5=0,1,---,m—1,
n—oo

and lim z, = 0. We rewrite Eq.(1.2) in the form

n—oo
(3.14) A™(zp — PpZn—7) + Qntn—o =0,
where P, = png—(fg, Q. = qnh(z%_‘:). Hence yn, = zn — PyZn-r, and (3.14)
becomes
(3.15) A™yp ~ Po_g QQn A™Yn_r + Qnyn—6 = 0.

ne—T1
From condition (iii) (iv), for any € > 0, ny > n; sufficiently large,
@n>9—¢ and Pn_,,-QQ" >pl—e for n>ny.

Then from (3.15) we have
(3.16) AMyp — (pl = €)A™ Y7 + (g — €)Yn—0 < 0.

Summing (3.16) m times from n to oo, use (3.13), we have

q

—E et _
yn > (Pl — €)Yn—r + m Z(s -n+m-— 1)(m Dy for n > no.

s=n
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So the equation
- = _
Up = (pl — E)Un-r + '(n(i—_—[-)—‘- Z(S —-—n+m— 1)(771 l)us—a
/T s=n

has an eventually positive solution u,. Hence the equation
A™(un ~ (pl — €)tn—r) + (@ — )up_y =0
has an eventually positive solution. This contradicts (v) by Lemma 2.3. 0

Example 3.2. Consider
1 )
(317) A™ (:En e an-Qe_‘c"_z) + QnIL'n-—Eez"_z =0

Here, m > 1 is odd, p, = %, T =2 0 =2, and g(z) = ze %, h(z) = ze?,
gn = 2me(-D" Clearly, I%rrigfqn = % > 0, and 7}1{1{}0——3"—7 == 1, We can show
that the conditions of Theorem 3.2 are all satisfied. Therefore, cvery solution of
Eq.(3.17) is oscillatory. For example, x, = (~1)" is an oscillatory solution of the

cquation.

4. NONOSCILLATION

Theorem 4.1. Assume that

(i) g is nondecreasing, xg(z) > 0 for x € R, and there exists a d > 0 such that
g(d) < d;
(ii) fis nondecreasing in z, zf(n, ) > 0 for (n, z) € N(ng) x R, and

(4.1) i nMm=Df(n, ¢)| < oo for constant ¢ # 0.

n=ng

Then Eq.(1.1) has an eventually positive solution.

Proof. Choose § > 0 such that 8 + g(d) < d, then by (4.1) there exists a N > ng
such that

(4.2) 1 Zs(m“l)f(s, d)<d—g(d) - g for n >N

(m—- 1)<
Let BC be a partially ordered Banach Space of all bounded sequences defined on
N(ng). Set

Q:{:vz{xn}eBC: ngngd,neN(no)}.
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Now we define operator I on Q as follows
Po. = 4 +9@n0)+ by sﬁjﬂ(s ndm— 1) D (s 5y ,) n> N

T'zn ng<n<N.
From condition (i) and (4.2), it is easy to see that 8 < Tz, < 8+ g(d) + (d - g(d) —
3) = d, thus I'Q C Q. Conditions (i) and (ii) imply that I is increasing in x, i.e. if
Zn < Yn, then 'z, < Ty,. Therefore, by Knaster's fixed point theorem, there exists
z € §. such that

Zp =B+ g(Tn—r) +

1 i _
(m - 1)! Z(S - n+m - 1)(m 1)_f(5, xs—a) for n 2 N

We see that z, is an eventually positive solution of Eq.(1.1). This completes the
proof of Theorem 4.1. O

Example 4.1. Consider
(4.3) Azy — 23 )+ f(n,zn_1) =0

Here, m =3, 7 =2, 0 =1, and g(z) = 23, f(n,2) = [6_3”'3(1 — 363 4365 — %) —
e” §"_3(1 —3e+3e? —63)].’15%. It can be easily checked that the conditions of Theorem
4.1 are all satisfled. Therefore, Fq.(4.3) has an cventually positive solution. In fact,
Ty, = € " is such a solution.
For Eq.(1.1), combining Theorem 3.1 and 4.1, we obtain the following corollary.

Corollary 4.1. Let m=1, assume that

(i) g is nondecreasing, zg(x) > 0 for x € R, and limsup L‘Z\%ﬂ =ce (0, 1);

jz|—o0
(i) f is nondecreasing in z, f(n, ) >0 for z # 0, and there exists 3 € (0, 1)
such that | f(n, z)|/\z|® is nonincreasing in |z|.

Then every solution of Eq.(1.1) is oscillatory if and only if

(4.4) i |f(s, ¢)] =00 for constant c # 0.

s=ng

Proof. The necessity follows from Theorem 4.1, and the sufficiency follows from
Theorem 3.1. O

Example 4.2. Consider

1

1 1 1
(4.5) A(:cn ~ 5%n-3 = mfl_S) + (36% +2)z2 ,=0
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Here, m = 1,7 =3,0 = 2, and g(z) = 1z + z%, fln,z) = (36% + 2)z§. Choose
8= %, we can show that the conditions of Corollary 4.1 are all satisfied. Therefore,
every solution of Eq.(4.5) is oscillatory. In particular, z, = (—~1)e is an oscillatory

solution of the equation.

Theorem 4.2. Assume that
(i) zg(z) > 0, zh(z) > 0 forz # 0, and |g(z) — g(y)| < |z —y| forz, y € (0, 1],
h is nondecreasing;
(ii) 0 < n— 1, < M, where M is a positive constant;
(iil) there ezists A, ¢ € (0, 1), such that p,A~""™) < ¢ <1 and

)\—n

x
Pn/\—(n_T") + m Z(s -—n+m-— 1)(m—1)(Ish(/\as) <1 forn > ny.
T s=n

Then Eq.(1.2) has an eventually positive solution x, which tends to zero exponen-

tially as n — oo.

Proof. Denote N = min{ inf 7,, inf an}, Ni=N+M.
0

n>ng n>n

Let BC be the Banach Space of all bounded sequences defined on n > N, with the
norm ||z|| = sup |z,A"|. Set
n>N

Qz{mz{mn}eBC: Oangl,nzN}.

Clearly, 2 is a nonempty, bounded, closed and convex subset of BC.

Now we define operators I'; and I's on § as follows

r _ p’nA_ng(xTn/\Tn)a n 2 Nl
1Ty = ﬁ;rlel‘F(l_T\%)a N<n< M

o &
(4.6) Toy, = (n/\z—m Y(s—-n+m-— 1)(m—1)4sh(yasz\“‘), n> N,
’ n— s=n
Nill"zpr NSnSNl

In view of conditions (i) and (iii), For any z,y € 2, we have 0 < I'jz, + oy, < 1,
thus 'z + I'yy € Q, and from conditions (i), (ii) and (iii) we have
|(T12n — T1yn)A"| = |pn - 19(zr AT™") = 9(yr, A™))]
< prlzr, AT — yr, AT
= P A" TN 2r, — Y|
S ppA™TMA™ 2, — Yn, |

e |z A™ = yr, AT
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Hence ||T'yz — 2yl| < ¢||lz — y||, thus I'; is a contraction on Q. From (iii) we have
1 00

Z(S -n+m-— 1)(m_1)48h(yas)‘os) <A,

(4.7) ey

=N

thus for A € (0, 1), the series in (4.7) is uniformly convergent in y € . Since h is
continuous in y, I's is continuous in y. Condition (iii) and (4.6) imply that the family
of I'2Q is uniformly bounded. We now shall show that T'sQ is uniformly Cauchy.
For any y € Q, from (4.6) and (4.7), we have

1 o
P2 X" = Togm, X = | oy > (s =+ m = 1) Vgh(ys, 1)
C s=ny
l oo
T Z (s ~nz +m— 1) Vg,h(y,, A7)
"t s=ng

<A™ 4+ A" for ny, ng > Ny

Since the above series is uniform convergent, for any ¢ > 0, there exists a No > Ny,
for any y € 2, we have

IToyn, A™ — Toyn,A"?| < € for ny, ng > Ny

Thus I'sQ) is uniformly Cauchy. Therefore, by Discrete Krasnostlskii’s fixed point
theorem, there exists y € Q, such that 'y + I'yy = y. Clearly, 0 < y, < 1 for
n > Np. Let zn = ynA"™, then z, is an eventually positive solution of Eq.(1.2).
Clearly, ,, tends to zero exponentially as n — co. The proof is complete. O

Example 4.3. Consider

1
(4.8) A¥zp — 2725 o) + gu23,,5 =0 for n> 4.
Here, m = 3, pp = 27", 7y, = n— 2, 0, = 2n + 3, and g(z) = 23, h(z) = x%,
gn =2"372_4335. 2755 Choose A = 2’%, c= %. It can be easily checked that
the conditions of Theorem 4.2 are all satisfied. Therefore, Eq.(4.8) has an eventually

positive solution which tends to zero exponentially as n — co. In fact, T, = 27" is
such a solution.
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