DOI QR코드

DOI QR Code

ASYMPTOTIC NORMALITY OF ESTIMATOR IN NON-PARAMETRIC MODEL UNDER CENSORED SAMPLES

  • Niu, Si-Li ;
  • Li, Qlan-Ru
  • Published : 2007.05.31

Abstract

Consider the regression model $Y_i=g(x_i)+e_i\;for\;i=1,\;2,\;{\ldots},\;n$, where: (1) $x_i$ are fixed design points, (2) $e_i$ are independent random errors with mean zero, (3) g($\cdot$) is unknown regression function defined on [0, 1]. Under $Y_i$ are censored randomly, we discuss the asymptotic normality of the weighted kernel estimators of g when the censored distribution function is known or unknown.

Keywords

censored sample;non-parametric regression model;weighted kernel estimator;asymptotic normality

References

  1. J. K. Benedetti, On the nonparametric estimation of regression functions, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 2, 248-253
  2. Y. Fan, Consistent nonparametric multiple regression for dependent heterogeneous processes: the fixed design case, J. Multivariate Anal. 33 (1990), no. 1, 72-88 https://doi.org/10.1016/0047-259X(90)90006-4
  3. A. Foldes and L. Rejto, Strong uniform consistency for nonparametric survival curve estimators from randomly censored data, Ann. Statist. 9 (1981), no. 1, 122-129 https://doi.org/10.1214/aos/1176345337
  4. A. A. Georgiev, Consistent nonparametric multiple regression: the fixed design case, J. Multivariate Anal. 25 (1988), no. 1, 100-110 https://doi.org/10.1016/0047-259X(88)90155-8
  5. A. A. Georgiev and W. Greblicki, Nonparametric function recovering from noisy observations, J. Statist. Plann. Inference 13 (1986), no. 1, 1-14 https://doi.org/10.1016/0378-3758(86)90114-X
  6. E. L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc. 53 (1958), 457-481 https://doi.org/10.2307/2281868
  7. H. Koul, V. Susarla and J. Van Ryzin, Regression analysis with randomly right-censored data, Ann. Statist. 9 (1981), no. 6, 1276-1288 https://doi.org/10.1214/aos/1176345644
  8. M. B. Priestley and M. T. Chao, Non-parametric function fitting, J. Roy. Statist. Soc. Ser. B 34 (1972), 385-392
  9. G. G. Roussas, Consistent regression estimation with fixed design points under dependence conditions, Statist. Probab. Lett. 8 (1989), no. 1, 41-50 https://doi.org/10.1016/0167-7152(89)90081-3
  10. G. G. Roussas, L. T. Tran, and D. A. Ioannides, Fixed design regression for time series: asymptotic normality, J. Multivariate Anal. 40 (1992), no. 2, 262-291 https://doi.org/10.1016/0047-259X(92)90026-C
  11. L. Tran, G. Roussas, S. Yakowitz, and B. T. Van, Fixed-design regression for linear time series, Ann. Statist. 24 (1996), no. 3, 975-991 https://doi.org/10.1214/aos/1032526952
  12. L. G. Xue, Strong uniform convergence rates of wavelet estimates of regression function under complete and censored data, Acta Math. Appl. Sin. 25 (2002), no. 3, 430-438
  13. B. L. S. Prakasa Rao, Asymptotic theory of statistical inference, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1987
  14. Q. H. Wang, Some convergence properties of weighted kernel estimators of regression functions under random censorship, Acta Math. Appl. Sin. 19 (1996), no. 3, 338-350