요약

국내 모션 캡처 방식의 작업환경에서 문제점이 되고 있는 부분은 사람의 감각이 필요로 하는 부분에 키 모션 데이터가 사용한다는 점이다. 작품 전반에 인간적인 이미지를 많이 드러내지 못한다는 점과 무조건 모션 캡처 데이터만으로 해결을 하려는 속도표 같은 공정 방식이었다. 모션 캡처의 응용 분야와 그 효율성은 실로 다양하고 효과적이지만 이와 같은 문제점을 극복해 내지 못한다면 막대한 자본의 손실과 인력의 낭비만을 초래 할 것이다. 본 논문에서는 일부 표정 애니메이션에 있어서 모션 캡처와 키 애니메이션 제작방식의 장단점을 비교분석한다. 또한 실제 제작을 통해서 이들을 분석하고 고가(高価)의 모션 캡처 장비로 제작할 수 없는 환경에서의 키 애니메이션 제작방식의 효율적인 방안을 제시한다.

■ 주제어 : | 애니메이션 | 모션캡처 | 3D컴퓨터 |

Abstract

Main problem in the domestic motion capture type production is that motion data are used even in the case when the human sensibility is needed. In other words it fails to give human images to the work, and production method only use motion capture data unconditionally and impetuously. Even though motion capture is effective and are various and applicable to various areas, it would cause enormous lose of capital and manual labor if these problems are not solved. In the present study, we compare motion capture with key animation production and analyze the merits and short comings of them. Also, we analyze them through the actual production and present the efficient method of key animation production when the expensive motion capturing devices are not available.

■ keyword : | Animation | Motion Capture | 3D Computer |

1. 서 론

1. 연구의 목적

모션 캡처는 키 애니메이션(Key Animation)으로 작 엽한 것보다 시간적으로 나질적인 면에서나 상당한 차 이가 있기 마련이다. 또한 모션 캡처 데이터를 사용한 애니메이션들 중에는 모션 캡처를 신호하는 쪽도 있고, 키 애니메이션을 고정하는 쪽도 있다. 그러나 모션 캡

접수번호 : #070124-001
접수일자 : 2007년 01월 24일

심사완료일 : 2007년 04월 05일
교신자 : 이태구, e-mail : digiani@pusan.ac.kr
차는 기에 애니메이션과 상반된 개념이 아닌 상호 교환적
인 매체로 다가가야 할 것이며, 그 목적은 자연스러운
인간의 동작을 표현하려는 점에 대해 전반적으로
의한 수단으로 받아들여져야 할 것입니다.

이제는 여기서 한 단계 더 진보된 ‘퍼포먼스 캡쳐
(Performance Capture)’라는 시스템의 개발에 실사
측에 가까운 영상을 창조하였다. 퍼포먼스 캡쳐에서 캐
릭터의 얼굴에 수 시간에 걸쳐 약 150여개의 초보 및 센서
들을 부착하여 정교한 페이싱 모션 데이터를 캡쳐하려
는 이유가 무엇일까? 사람의 얼굴은 상호간의 대화에
 있어서 매우 중요한 역할을 하기 때문입니다[1].

특히 3D애니메이션 작품에 있어서 가장 중요한 요소
의 하나인 관중의 감정을 입은 원작의 내용과 호
흡에 따라 그에 결합하는 각 동장 캐릭터마다의 표정 연
출과 몸짓 연기가 필요하다. 특히 캐릭터가 빼어내는 과
장과 그로스크의 얼굴 표정에서 보는 이들은 그 캐릭
터가 가지고 있는 성격과 각기 다른 심리를 단편에 파악하
고 같이 공감할 수 있다.

그런 얼굴 표정을 제작하기 위해서는 모션 캡쳐나 퍼
포먼스 캡쳐를 이용한 데이터의 디지털 작업법보다
아날로그의 접근방식을 택해야 한다. 물론 구현방식에
 있어서 그 용도나 관객들이 요구하는 캐릭터에 따라 차
이는 나겠지만 무엇보다 캐릭터가 내포하고 있는 심정
과 특성의 적절한 표현을 위해서는 기초 얼굴 해부학을
바탕으로 표현되어야 하며, 정확히 이해하고 효과적으
로 적용시킬 수 있어야 한다. 이를 자연계의 음악과
적절히 어울리며 상황에 맞게 넘버를 독특한 성장 캐릭터
에 용도지어야 한다는 것이다[2]. 국내에서 이루어지고
있는 대체적인 각종 영상 장치를 통해 표현되는 편, 단
편 3D애니메이션 제작은 기계적인 한계와 사람의 감각
이 필요한 부분에 까지 모션 데이터가 사용되어 작품
전반에 인간적인 이미지를 많이 빠져 넣지 못한 점을
못내 아쉬워하면서, 무조건 모션 캡쳐 데이터만으로 해
결을 하려는 방식에 의존하여 미흡한 결과를 초래하고
있는 것이 다반사이다. 반면 모션 캡쳐를 활용하여 효
황을 누리고 있는 미국이나 유럽의 3D애니메이션 시장
본 연구 및 방법

본 연구는 3D컴퓨터 애니메이션 제작에 있어서의 엽
굴 애니메이션 제작을 위한 구현방식인 모션 캡쳐와 기
애니메이션에 대하여 각기 이론과 참고자료를 통해 습
득하였다. 이를 바탕으로 얼굴 표정 애니메이션을 모션
캡쳐와 기 애니메이션의 구현방식별로 적용해 제작하
였으며 사용 소프트웨어로는 3D수프트웨어인 Maya와
2D소프트웨어로 Adobe Photoshop, 그리고 편집 소프
트웨어 Adobe After Effect과 Premiere Pro를 사용
하였으며 모션 캡쳐에 있어서는 Alias | Motion-
Builder를 사용하였다. 이는 향후 3D컴퓨터 애니메이션
의 얼굴 표정 구현의 제작에 있어서 해결해야 할 연구
방향의 일환으로 제작해 보였다. 기 프레임 애니메이션
의 원활한 해석을 위해 본 논문에서 사용한 래스터
의 말을 강조한 것은 다양한 구현방식에 대한 분석들
중 하나이므로 다른 시각에서도의 접근 역시 가능하다고
할 수 있다. 또한 국내의 3D 캐릭터 애니메이션의 역사
가 다른 예술분야에 비해 매우 찾아 풍부한 제작를 위한 충분
한 블러리의 작품을 선정하기가 어려웠으며, 컴퓨터 그
래픽스가 매우 급 발전하는 분야이며 만큼 기술적 측면
이외의 각사적 자료의 부족으로 인해 주관적인 분석이
이루었다. 그리고 자체 제작을 통한 분석에서 프로그
램의 한계성도 있었다. 그로 말해양식 각 구현방식별
효율성의 변화도 예측할 수 있는 부분이기 때문에 이는
추가 더 깊은 관련 연구와 더불어서 이 또한 반드시 숙지
해야할 과제이다. 3D컴퓨터 애니메이션 구현 방식별
제작 연구로서 최고예력의 네 가지 3D캐릭터의 얼굴을

1) 매우 긴 몫과 얼굴에 수백 개의 초조한 센서를 부착하여 미묘한
동작과 표정을 화면에 정교하게 음어로 고단한 최신 밸러기법.
모션 캡처와 커 애니메이션으로 각각 제작해본다.

사람의 얼굴은 성, 나이, 인종에 따라 다양한 특징을 가지고 있어서 서로 구별이 용이하고 내적 심리 상태를 쉽게 알아볼 수 있는 부분으로 여겨지고 있다. 이와 같이 3D 컴퓨터 애니메이션 제작에서도 얼굴 표정 애니메이션은 각 캐릭터의 모습과 성격, 그리고 작품 내용에 따라 각각 다르게 나타날 수 있다[3]. 얼굴의 근육과 근육의 움직임을 정확하게 모델링 데이터에 세팅해주며 각 표정마다 캐릭터의 연기나 감정 전달이 확실한 부위의 과장 포인트를 파악하여 분석해본다.

II. 이론적 배경

1. 얼굴 표정 애니메이션의 이해

얼굴은 뼈, 근육, 피부 등의 조직으로 이루어져 있으며, 이들에 대해 해부학과 미술 분야에서 많은 연구가 진행되었다. 안면 근육은 구조적 특성으로 인해 다양한 표정을 연출하며, 심리학자들의 오랜 연구대상이었다 [4]. 특히 애니메이션의 경우 실제로 사용된 얼굴 표정 등을 통해 감정을 전달하게 되므로 얼굴 애니메이션은 그만큼 중요하다고 볼 수 있다.

얼굴 애니메이션 연구의 주된 방향은 감정을 나타내는 눈과 입술의 움직임을 처리하기 위한 효율적인 방법을 찾는 것이다. 지금까지 얼굴 표정 동작에 대한 연구는 많이 해져 왔으나 아직 3D 기계인이나 애니메이션에 등장하는 캐릭터나 자연스러운 얼굴 표정을 연출하고 있다고 보기 힘들다. 얼굴 표정 애니메이션을 위한 연구는 1974년 파커(Parke)의 파라메트릭 모델(Parametric Model)을 시작으로 시작되었으며, 얼굴 표정 애니메이션 연구의 주된 연구 방향은 인간을 비롯한 동물의 감정을 나타내는 눈과 입술의 움직임 등을 표현하기 위한 정확하고 효율적인 방법을 찾는 것이다[5]. 얼굴 표현의 계층적 구조(Hierarchy)를 갖는 영역들 크로우와 플래트(Platt와 Badler)의 연구와, 얼굴의 변형을 인한 근육에 의한 움직임의 결과로 해석하여, 얼굴 변형에 영향을 미치는 근육들을 시뮬레이션한 헤터스(Waters)의 연구 등을 대표적인 연구로 볼 수 있다. 즉, 얼굴 표정 애니메이션 생성 기법에 있어서 동작 제어 애니메이션 기법의 움직임 기반 모델링에 해당하는 것이 바로 근육 기반(Muscle Based) 모델링 기법이다.

또한 에크산(Eskman)은 얼굴의 움직임에 대한 해부학적 분석으로 Facial Action Coding System(FACS)을 개발하였고, 얼굴 표정에 따라 46개의 Action Unit(AU)을 정의하였다. 이러한 연구 성과들은 컴퓨터 그래픽을 이용한 얼굴 표정 애니메이션에 많은 영향을 주었다.

이러한 연구들은 얼굴의 변형 방식을 그대로 표현하기 때문에 정확성은 좋지만, 구현량이 많고 애니메이션 시스템의 구현이 어렵다는 단점이 있다. 얼굴 표정에 대한 연구를 바탕으로 얼굴 움직임 자체에 대한 연구는 그 동안 의학 및 미술 분야에서 많이 이루어졌으며, 상당한 양의 결과들이 축적되어 있다. 그러나 이와 같은 지식을 바탕으로 3D 캐릭터 애니메이션에 자연스러운 얼굴 표정을 도입하기 위해서는 극복해야 할 많은 기술적 과제가 남아 있다.

2. 얼굴 표정 애니메이션의 원리

우리가 만드는 대부분의 행동에는 기대 동작이 있다. 인간은 먼저 생각하고 나중에 행동한다. 말할 때도, 우리는 말하고자 하는 것을 먼저 생각하고 말하기 위해 복잡한 근육의 종류들을 선택하게 된다. 기대는 행동을 위한 준비를 의미한다. 큰 동작을 취할 때는 더욱 확실한 기대효과가 나타난다.

기대 동작은 항상 에일 행동의 반대방향으로 나타난다. 몸 전체에 행동이 있다면 거대한 힘의 기대효과가 가진다. 보통 기대 동작은 느리며, 이러한 기대 동작들이 모여 빠르고 큰 행동을 가능하다. 간단한 운동은 한 방향으로 가기 전에 먼저 다른 방향으로 간다는 것이다. 이러한 간단한 2D 기법을 이용하면 얼굴 표정 애니메이션을 활성 풍부하고 역동적으로 만들 수 있다. 얼굴 표정 애니메이션의 얼굴 형태 제작에 있어서는 두개골 모양과 각 관절의 움직임이 근육에 의한 것보다 외형적으로써 더 많이 드러나기 때문에 기초바탕화에 있어서는 과격에 의한 형태가 첫 번째로 고려해야 할 원리이다. 두개골은 총 21개의 뼈들로 구성되어있는 복잡한 부
분이지만 대부분이 단단히 희생되어 있어 하나의 덩어리로 생각하는 것이 좋다. 두개골에서 음직일 수 있는 부분은 하악골(턱뼈) 정도이다. 음식을 섞는 운동과 전, 후로 음직이는 운동, 좌, 우로 음직이는 운동 3가지 형태의 운동을 보여준다. 협골(광대뼈)과 안와(눈구멍)에 의한 굴곡, 비굴, 전두골 외 무너를 감싸고 있는 뼈들이 얼굴의 외형적인 형태를 나타내고 있다.

사람의 얼굴에서 설 수도 없을 만큼 다양한 인상과 표정이 나올 수 있는 이유는 하악골(턱뼈)이 상하좌우 자유로운 음직임이 가능한 것과 악면 근육의 운직임에 의한 변화 때문이다.

얼굴 표정 애니메이션 제작에 있어서 기초부하학에 따른 얼굴의 모든 특성을 구분하기는 매우 주관적인 요소가 많고 수직으로 표적이 어려운 부분들이 많기 때문에 이 장에서는 얼굴 표정에 있어서 효과적으로 나타낼 수 있는 주요 특징만 논의한다. 얼굴은 두드리지게 구별되는 눈, 코, 입, 귀, 안면, 머리 부분으로 나눌 수 있다. 특히 눈, 코, 귀, 입 부분은 얼굴에서 작은 부분을 차지하지만 비교한 차이로 인해 상당히 다른 느낌을 준다. 또한 신체뿐만 아니라 얼굴 부분도 정확히 대칭이 되지 않는다. 좌우가 정확히 대칭되다면 오히려 애매한 느낌을 줄 수 있다. 좌우 기관이 따로 분리되어 있는 눈, 귀는 특히 그러하다. 그리고 표정을 만들어내는 얼굴 근육들의 수측과 이완은 근육과 연결된 피부와 조직들을 움직이도록 한다. 이러한 얼굴 표정은 시선의 방향, 머리의 움직임, 흉조, 안색의 변화, 밝의 표정, 동공의 확장 같은 자동적인 반응들도 수반한다.

이와 같이 강한 표현에 따른 각 골격과 근육들의 움직임의 원리 [표 1]를 적용함과 동시에 캐릭터의 습관이나 물체, 얼굴 표정 등 신체적, 심리적 특성을 고려해

<table>
<thead>
<tr>
<th>표 1. 강점표현에 따른 근육의 형태</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>표정</td>
<td>이미지</td>
<td>근육의 형태</td>
</tr>
<tr>
<td>A. 기쁨, 즐거움(joy)</td>
<td></td>
<td>관골근과 소근의 역할을 보여준다. 이들 두 근육은 웃음을 짓게 하는 근육이다. 이로 인해 사람들은 빛이 눈을 뜨게 하는 근육이다. 관골근은 근육의 진행 방향에 대하여 작동 방향의 비슷한 근육이 된다.</td>
</tr>
<tr>
<td>B. 슬픔, 비애(sadness)</td>
<td></td>
<td>입술의 가정자리를 아래로 휘어내려 부정적 표정을 연출하는 구구체체근이다.</td>
</tr>
<tr>
<td>C. 노여움, 성당(anger)</td>
<td></td>
<td>비근근과 상순비백터근의 운직임을 보여준다. 비근근의 경우 사람보다는 짧아진 아래 침을 이제갈 때 아래의 침을 아래로 대각 방향으로 당기고 싶은 반응에 따라 상해하려고 한다. 상순비백터근은 그림과 같이 상해하려고 하려고 하려고 당기고 싶은 반응을 시사한다.</td>
</tr>
<tr>
<td>D. 무서움, 공포(fear)</td>
<td></td>
<td>전두근은 Character가 놀라거나 긴장할 때, 눈 Bloody 음직일 수 있는 움직임을 하고 한다. 이와 같이 무서움은 근육의 방향과 작동 방향으로 고정하여 압박하게 한다. 이와 같이 무서움은 이상 근육의 방향으로 작동하려고 한다.</td>
</tr>
<tr>
<td>E. 실망, 험모(disgust)</td>
<td></td>
<td>이근과 하순체체근이다. 이 등은 일관히 발달하게 하여, 하순체체근은 입술을 경직시켜 그림같이 부정적 표정을 연출한다.</td>
</tr>
<tr>
<td>F. 놀람, 경악(surprise)</td>
<td></td>
<td>구동근은 입술의 형태를 결정하는 근육이다. 그림과 같은 반응을 할 때 입술을 오래 두고 있게 만드는데 이때 때문에 입술은 동글하게 된다.</td>
</tr>
</tbody>
</table>
서 얼굴 표정 애니메이션을 제작하여야 캐릭터의 의사나 미묘한 감정을 제대로 전달할 수 있다. 또한 3D캐릭터 애니메이션에 있어 보다 사실적인 제작이 가능해진다. 아울러 애니메이션의 기본적 특성을 고려하여 과장된 동작 표현에 응용함으로써 보다 다양한 영상을 표현할 수 있을 것이다.

3. 키 프레임을 활용한 얼굴 표정 애니메이션

키 프레임 애니메이션 기법을 활용한 얼굴 애니메이션은 폴 바디 애니메이션 제작 과정과 기본적으로 동일하다. 따라서 특정 표현을 생성하기 위해서는 중요한 키 프레임에서 얼굴 모델의 상태를 정의하고, 이들을 인버티翁으로 연결하면 애니메이션이 생성된다. 그러나 짧은 시간에 얼굴표정의 변화가 불연속적으로 이루 어지기 때문에 적절한 수준의 애니메이션을 생성하기 위해서는 상당히 많은 수의 키 프레임이 필요하게 되므로 수작업 양이 늘어나는 어려움이 있다[7]. 하지만 최근 개발되어진 3D소프트웨어의 자속적인 업그레이드를 통한 작업 데이터의 축적으로 추후 제작되어지는 캐릭터에 적용할 수 있어 이 점은 충분히 극복할 수 있다. 키 프레임 애니메이션 기법의 경우 임의의 정점을 만들기 위해 중요한 키 프레임들에 대해 얼굴 모델의 상태를 정의하고 이들 사이로 인버티온에 의해 보간하는 것으로 애니메이션이 생성된다. 인간의 감정 표현은 우리가 상당히 이상으로 많은 표정들을 가지고 있다. 우리는 하루도 끝없이 그들을 보며 지낸다. 그렇기 때문에 어설전 감정 표현은 관객들에게 손쉽게 파악되는 것이다. 그래서 얼굴의 근육구조와 상황 연출이 필요한 것이다. 키 프레임을 이용한 얼굴 표정 애니메이션 제작에 있어서 항상 보여지는 의형의 모델링보다는 얼굴 각 부분의 근육의 형태와 다른 표정을 지을 때 형성되는 근육들의 반응을 살펴보아야 한다[8].

![그림 1. 아](image1)
![그림 2. 이](image2)

![그림 3. 우](image3)
![그림 4. 예](image4)

![그림 5. 오](image5)

<기본 발음별 근육의 묘사 방법>

a) ‘아’ 발음[그림 1]

아래쪽의 조인트(Joint)를 회전시킴으로서 간단히 제작할 수 있다. 이때는 안면 근육 중 구름근이 가장 영향을 많이 받으며 캐릭터의 풍부한 움직임을 주기 위해서는 구름근의 영향으로 이와 연결되어 있는 상순비어가 근 가소근 등 안면의 거의 모든 근육에 움직임을 부여해야 한다.

b) ‘이’ 발음[그림 2]

턱이 벌어지지 않으며 입을 조금 벌리 앉고 소근과 구름근을 당기듯이 모델링을 해준다. 이 때 양쪽 입가는 안쪽으로 당겨 들어가는 느낌으로 모델링되어야 한다.

c) ‘우’ 발음[그림 3]

구름근의 영향으로 입술을 오므려 동그랗게 만든다. 역시 턱의 움직임은 없으며 구름근이 앞으로 돌출된다. 그리고 해상순비어가 근도 영향을 받아 구름근 쪽으로 말려나온다. 소근과 협근도 입가 부분의 변형을 가져온다.

d) ‘예’ 발음[그림 4]

‘이’ 발음 모양과 같으며 안중부분의 움직임이 조금 아래쪽으로 움직인다. 여기서 간단히 아래쪽을 움직이면 된다.
원문(고유한 번역 없음)
III. 얼굴애니메이션 제작

최로 예력의 네 가지 3D캐릭터의 얼굴을 모션 캡처와 키 애니메이션으로 각각 제작하여 비교분석하는 방법으로 진행하였다. 본걸의 얼굴은 성, 나이, 인종에 따라 다양한 특성을 가지고 있어서 서로 구별성이 험하고 내적 심리 상태를 쉽게 알아볼 수 있는 부분으로 여겨지고 있기 때문에 얼굴의 표정 변화에 따른 애니메이션으로 개선방안의 효과적인 극복방안을 마련하는 방법을 밝혔다.

특히 얼굴의 근육과 근육의 움직임들을 정확하게 모델링 데이터에 세부화하며 각 표정마다 캐릭터의 연기나 감정 전달이 확실한 부위의 파트를 파악하여 분석해 보았다. 캐릭터의 모델링은 본 연구에 적합한 형태로 디자인되었다. 즉 일반적인 얼굴형태보다는 그로테스크한 형태로 제작되었다. 이는 모델링 후 애니메이션 시점을 때 캐릭터의 근육과 각 근육들의 수축, 평창과 그에 따른 피부의 변화를 쉽게 살펴볼 수 있는 이유 때문이다.

3D캐릭터의 제작 프로그램은 앞서 사례로 든 영화에서 주로 사용되었던 3D소프트웨어인 Maya와 2D소프트웨어 Adobe Photoshop, 그리고 편집 소프트웨어인 Adobe After Effect와 Premiere Pro를 사용하였으며 모션 캡처 적용에 관련된 장비 사용 및 제작은 부산시 영도구에 위치한 부산 멀티미디어 지원센터에서 이루어졌으며 영화사 부산 멀티미디어 지원센터에서 이루어졌으며 영화사 부산 멀티미디어 지원센터에서 이루어졌다. 이 필요들은 향후 3D컴퓨터 애니메이션의 얼굴 표정 구현의 제작에 있어서 해결해야 할 연구방향의 일환으로 제작해 보았다[표 2].

1. 모션 캡처 방식

1.1 얼굴캡처 (Facial capture)

a) 마커 부착: 캐릭터의 특성에 따라 개수와 위치를 조절한다. 본 제작에 있어서는 20개의 마커를 얼굴에 부착하였다.

b) 시스템 세팅: 카메라의 개수와 위치를 적절히 조정한다.

c) Calibration & Face Template: 캡처 받을 범위를 세정하는 것으로 표준의 범위를 충분히 주어 안정된 영역을 확보한다.

d) Tracking Parameter 설정: 마커의 이동범위, 속도, 사이즈 등을 조절한 후 얼굴 모션 캡처를 한다.

1.2 파일 속성 준비(적용할 모델링 데이터의 Export)

Maya > Alias | Motion-Builder : Maya에서 Blend Shape으로 기본 얼굴표정들을 만든 후 <.fbx>로 Export한다.

1.3 Alias | Motion-Builder Face Tool

a) 모션데이터Import : 앞서 작업했던 모션캡처 데이터를 Alias Motion-Builder로 Import한다.

b) Facial Menu의 Face Source 세팅 : Maya에서 제작한 캐릭터의 모션 정보를 Alias | Motion-Builder의 기본 얼굴 소스와 연계시키는 단계이다.

c) Facial Menu의 Face Target 세팅(Actor생성) : Maya로 작업한 캐릭터의 <.fbx>데이터를 Alias | Motion-Builder의 Target Model에 등록하는 것이며, Face Source 세팅 후 저장된 파일의 캡처 받을 <최로예력>모션의 데이터와 연계시키는 단계이며 이는 얼굴 모션 캡처의 최종 작업이다.

1.4 애니메이션의 수정 및 저장

Alias | Motion-Builder 내에 있는 프레임의 조정으로 모션 캡처의 적용 후 부분적인 수정는 가능하다.

1.5 Maya에서의 렌더링

각 표정별로 저장된 <.fbx>파일들을 Maya로 임포트하여 부분 수정 후 최종 렌더링을 한다.
表 2. 모션캡처와 키 애니메이션 비교

<table>
<thead>
<tr>
<th>감정</th>
<th>스팟샷</th>
<th>얼굴표정 애니메이션 인트로</th>
</tr>
</thead>
<tbody>
<tr>
<td>웃음</td>
<td>모션캡처</td>
<td>![이미지]</td>
</tr>
<tr>
<td>눈물</td>
<td>모션캡처</td>
<td>![이미지]</td>
</tr>
<tr>
<td>놀람</td>
<td>모션캡처</td>
<td>![이미지]</td>
</tr>
<tr>
<td>적벽</td>
<td>모션캡처</td>
<td>![이미지]</td>
</tr>
</tbody>
</table>
2. 키 프레임 방식

2.1 캐릭터 모델링:

효과적인 표정 연출을 위한 캐릭터의 두상을 모델링 한다. 이때 구강구조와 치아의 모델링도 같이 진행한 후 배경 작업을 한다.

2.2 Bone 셋업:

캐릭터 모델링 완성 후 턱의 움직임에 따른 하악골의 움직임을 고려하여 조인트(Joint)를 생성한다. 캐릭터의 특성을 살려 움직임에 필요한 본(Bone)들을 생성시켜 준다.

2.3 Binding 작업:

셋업 된 본들을 두상의 피부와 연결되어 움직이게 하기 위해 바인딩(Binding)시킨다.

2.4 Blend Shape 작업:

수심 개의 모델링을 표정별로 제작하여 하나의 캐릭터의 움직이를 태이터화 시킨다. 이때 전체 작업공정 에서 표정의 연출을 위해 가장 중요한 단계이며, 특히 애니메이터의 감각을 반영할 수 있는 공간이기도 하다.

2.5 Key-Setting 작업:

각 표정에 따른 과장 포인트와 모션속도의 완구조절 을 하며 150프레임 내에 키(key)들을 세팅한 후 최종 핸더링을 한다.

풀 바디(Full Body) 모션은 모션 캡처를 사용하여 작 업속도를 높이고, 일괄 표정은 모션 캡처 또는 키 프레 임 애니메이션을 사용하여 효율적으로 각 구현 방식을 적용 제작할 수 있는 것이다. 이를 위해서는 기초부하 를 버티고 연골의 곡률과 근육의 움직임들을 정확 하게 세팅해주며 각 표정마다 캐릭터의 연기에 감정전 달이 확실한 부위의 과장 포인트를 파악하여 분석해야 한다. [표 2] 또한 근육의 움직임을 자연스럽게 표현하기 위해 버텍스(Vertex)와 본(Bone)의 위치, 회전 크기의 변화의 정확한 양과 작업 소요시간을 계산하여 키를 적절히 제어하는 키 설정과정이 필요하다. 키의 속성을 제어, 가 감속, 등 속도를 유지하는 속도조절 과정 또한 중요한 요소로 작용한다. 즉, 키를 중심으로 움직임의 변화를 부드럽게 혹은 직선으로 급격히 움직이도록 연 속성 제어과정이 필요로 따라가 한다는 것이다. 단지 모션 캡처의 방식으로만 접근한다면 기본적인 근육의 움직임은 어느 정도 가능한지는 모르나 대부분의 주름 이나 각년감정의 과장된 표현은 미비한 정도에 그친 다. 이때의 작업은 상당히 중요한 과정이기 때문에 제 작 기간에 있어서 상당한 시간적 손실을 불 문제점이 생긴다. 하지만 이로 인한 작업 속도상의 문제점도 현재는 충분히 배제할 수 있는 실정이다. 왜냐하면 현재 개발되었던 3D 소프트웨어들은 지속적인 업그레이드 에 힘입어 작업 데이터의 고용량 축적화 및 높은 호환 성의 기능을 가지고 있기 때문이다.

IV. 결론

현재 국내에서 제작되고 있는 대체적인 각종 영상 장치를 통해 제작되는 3D컴퓨터 애니메이션은 모션 캡처 방식이 가지고 있는 기계적인 한계성 때문에 미비한 결과를 초래하고 있는 것이 다반사이다. 그리고 소자본, 소인원으로 구축되어진 많은 국내 제작 프로덕션에서도 이루어지는 미흡한 지식을 통한 모션캡처의 낭용(濫用)은 만대한 자본의 손실과 인력의 낭비를 가져오기 우려 이다. 따라서 본 연구는 현재 제작되고 있는 작물 속에서 등장하는 캐릭터들의 내면의 감정을 더욱 깊게 표출시킬 수 있는 효율적인 접근 방법을 정립한 상황 속에서 각 구현 방식의 적용에 따른 선택과 한계성 의 극복방안을 모색하고자 하였으며, 또한 모션 캡처 방식과 카 애니메이션 방식간의 상호관계를 이해하고 서로의 장단점을 차이점을 실제 제작을 통해서 확인해 보았다. 제작 사례에서 나온 결과에 따라 3D모델의 페이셜(Facial)과 모션에는 모션 캡처 방식이 적합하다고 의 인화된 3D캐릭터 및 기존상형이 많은 과장된 표현기술 에 따른 제작이 필요한 캐릭터의 적용에는 오히려 카 애니메이션 방식의 적용이 적합한 효율적이다.
결국 모션캡처만으로 캐릭터의 과장된 얼굴표정 애니메이션을 제작하기에는 무리가 따른다. 이는 모션캡처 자체가 1차적 주요동작만을 잡는데 활용되며 수집된 모션 데이터는 많은 노이즈를 포함하고 있기 때문에 야모르그리 키 작업으로 수정, 보완 할 수밖에 없는 한계가 있기 때문이다. 국내 애니메이션 관련 대학에서 3D애니메이션 제작이 활발히 진행되고 있는 점을 감안하면 고가의 모션캡처보다는 애니메이터의 탁월한 감각과 더불어 필요한 기초간부작 지식의 기반을 토대로 키 애니메이션 제작 방식에 대한 연구가 활발히 이루어져야 할 것이다.

참고문헌

저자 소개

장욱 (Wook Jang)

* 1997년 2월 : 경성대학교 응용미술학과 (미술학사)
* 2006년 2월 : 경성대학교 멀티미디어 대학원 디자인학과(디자인학사)
* 2003년 10월 ~ 현재 : 경성대학교 CT제작스튜디오 근무

<s>관심분야> : 2D, 3D캐릭터 애니메이션, 특수효과

최성규 (Sung-Kyu Choi)

* 1994년 2월 : 중앙대학교 사진학과 (예술학사)
* 1997년 6월 : Pratt Institute (MFA)
* 2000년 2월 : New York Institute Of Technology(MA)
* 2001년 9월 ~ 현재 : 경성대학교 디지털콘텐츠학부 교수

<s>관심분야> : 디지털애니메이션, 디지털영상

이태규 (Tae-Gu Lee)

* 1989년 8월 : 중앙대학교 화학학과(미술학사)
* 2000년 2월 : 경성대학교 멀티미디어학과(미술학사)
* 2003년 9월 ~ 현재 : 부산대학교 디자인학과 교수

<s>관심분야> : 애니메이션, 시나리오