Ecosystem Risk Assessment Using the Indicator Species

지표종을 이용한 생태계 위해성평가

  • Chang, Jin-Soo (Arsenic Geoenvironment Laboratory (NRL), Department of Environment Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Kyoung-Woong (Arsenic Geoenvironment Laboratory (NRL), Department of Environment Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 장진수 (광주과학기술원 환경공학과 지질환경 비소제어 연구실) ;
  • 김경웅 (광주과학기술원 환경공학과 지질환경 비소제어 연구실)
  • Published : 2007.02.28

Abstract

Risk assessment by living indicator species provides the information about the ecosystem disturbance, disapperance of symbiosis and change of living group. In the initial stage of this kind research, the degree of contamination was reported using the level of simple number, but simple number may not represent the risk itself which can be casued in the living organisms. Risk assessment using various indicator species overcomes these limitations and can be expanded to the DNA level. In many developed counties, the government has supervised the researches about the indicator species for the monitoring and its application to ecosystem restoration. Several living indicator species found in the vicinity of the abandoned Au mines such as fern, earthworm, bacteria, rhizosphere-rhizoplane, salamamdor and DNA change of these species are described in this paper.

생태계 위해성평가는 유해물질의 노출로 인한 생태계 교란, 생물 공생의 파괴 및 부적합한 서식조건에 의한 생물집단구조의 문제를 적절히 평가할 수 있어야 한다. 초기의 위해성 평가는 오염의 수준을 숫자로 표기하여 단일된 공식으로 평가하였으나, 현재 이러한 평가는 실제로 생태계에 미치는 위해성을 평가하는데는 부적합하다. 따라서 지표종을 이용한 생태 위해성평가는 이러한 단점을 극복하며 육안적 지표의 변화 뿐만 아니라 유전자 수준에서의 변화까지도 감지함으로써 위해성 평가의 폭을 넓힐 수 있게 한다. 국외의 경우 오염의 평가 및 오염 지역 복원의 평가기준으로 여러 지표종을 이용하고 있으며, 여러 지표종을 국가 차원에서 종합적으로 관리하며 오염으로 인한 변화를 유전자 돌연변이 및 암발생 수준까지 연구함으로써 생태계 위해성 평가를 하는 추세이다. 국내의 경우에도 점차 지표종을 이용한 유해성 평가 연구가 진행되고 있으며, 오염물질의 인체에서의 발암 메커니즘, 동물실험을 통한 발암 메커니즘에까지 그 영역이 확대되고 있다. 본 논문에서는 현재까지 이용되는 여러 지표종을 개략적으로 살펴보고, 중금속으로 오염된 폐광산에서 발견된 생지표종인 고사리, 지렁이, 미생물 및 도룡뇽의 변화를 생태계 위해성 평가에 활용되어진 다양한 예가 소개되어 질 것이다.

Keywords

References

  1. 국립산림과학원, 2004, 폐광지 오염물질 정화 및 식생복원, 학술 심포지엄자료집, 108
  2. 배옥남, 이무열, 정승민, 하지혜, 정진호, 2006, 환경 오염물질 비 소의 체내 대사 및 인체 위해성, J. Environ. Toxicol., 21, 1-11
  3. 양서영, 김종범, 민미숙, 서재화, 강영진, 2001, Monograph of Korean amphibian (한국의 양서류), 아카데미서적
  4. 우보명, 2000, 폐탄광지의 산림훼손지복구 및 페석유실방지대책 에 관한 연구, 한국환경복원녹화기술학회지, 3(2), 24-34
  5. 이무열, 정진호, 2002, 음용수를 통한 비소 노출의 인체 안전성 평가, J. Toxicol. Pub. Health, 18(2), 107-116
  6. 이병무, 1999, 발암물질 노출량 산출 및 암 위해성 평가에 있어서 Biomarker의 활용, Environ. Mut. Carcino., 19(2), 95-101
  7. 이혜영, 박옥이, 진정화, 오세조, 양서영, 1997, 한국산 꼬리치레 도롱뇽 Onychodactylus fischeri의 핵형 분석, Kor. J. Gene., 19(2), 137-142
  8. 정해원, 기혜성, 박영철, 한정호, 유일재, 1996, CHO 세포에서 비 소의 세포독성기전, Environ. Mut. Carcino., 16(2), 117-123
  9. 차선호, 이혜영, 1995, 한국산 도롱뇽(Hynobius leechii) 염색체 의 인형성부위(NORs)다양성에 관하여, Kor. J. Gene., 17(2), 87- 98
  10. 최훈근, 류재근, 2001, 토양생물 지렁이를 이용한 폐기물 활용, 신광문화사
  11. 홍선기, 강호정, 김은식, 김재근, 김창회, 이은주, 이재천, 이점숙, 임병선, 정연숙, 정흥학, 조학용, 2005, 생태복원공학, 라이프사 이언스
  12. Aposhian, H.V., 1997, Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity, Annu. Rev. Pharmacol., 37, 397-419 https://doi.org/10.1146/annurev.pharmtox.37.1.397
  13. Arillo, A., Melodia, F., and Marsano, B., 1992, Nitrite biotransformation by mitochondria from the earthworm eisenia foetida (Savigny), Comp. Biochem. Physiol B., 102(2), 209-211 https://doi.org/10.1016/0305-0491(92)90112-5
  14. Artursson, V., Finlay, R.D., and Jansson, J.K., 2006, Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth, Environ. Microbial., 8(1), 1-10 https://doi.org/10.1111/j.1462-2920.2005.00942.x
  15. Bates, M.N., Smith, A.H., and Hopenhayn-Rich, C., 1992, Arsenic ingestion and internal cancers: a review, Am. J. Epidemiol., 135, 462-476 https://doi.org/10.1093/oxfordjournals.aje.a116313
  16. Berg, M., Tran, H.C., Nuyen, T.C., Pham. H.V., Schertenleib, R., and Giger, W., 2001, Arsenic contamination of groundwater and drinking water in Vietnam: a human health theat, Environ. Sci. Technol., 35, 2621-2626 https://doi.org/10.1021/es010027y
  17. Berman, D.I., Derenko, M.V., Maliarchuk, B.A., Grzybowski, T., Kriukov, A.P., and Miscicka-Sliwka, D., 2005, Genetic polymorphism of Siberian newt (Salamandrella keyselingii, Caudata, Amphibia) in its range and the cryptic species of the newt S. schrenckii from Primorie, Dokl. Biol. Sci., 403, 275-278 https://doi.org/10.1007/s10630-005-0110-1
  18. Brooks, R.R., 1988, Plants that hyperaccumulate heavy metals : Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Cambridge Univ. Press., Cambridge
  19. Cairns, Jr., J. and Heckman, J.R., 1996, Restoration ecology: the state of an emerging filed, Annu. Rev. Ene. Environ., 21, 167- 189 https://doi.org/10.1146/annurev.energy.21.1.167
  20. Chang, P.C., 2003, Migration of Uranium in a triggered phytoexraction system, GIST, Master`s degree
  21. Chang, J.S., 2005, Identification and characteristics of indigenous bacteria in arsenic-contaminated soil using ars gene and 16S rDNA, GIST, Master`s degree
  22. Chang, J.S., Gu, M.B., and Kim, K.W., 2006, Arsenic effects on Salamander in arsenic-contaminated abandoned mine: Ecological assessment analysis of relationships between As-exposure and p53-biomarker, (in preparation)
  23. Chang, J.S. and Kim, K.W., 2006, Isolation and detoxification of a novel efflux pump of arsB system of arsenite oxidation, Korean Soc. Biochem. Mol. Biol., spring presentation, 226
  24. Chang, J.S. and Kim, K.W., 2006, Isolation and identification of rhizosphere / rhizoplane and interactions of ferns-microbe of arsenic-contaminated abandoned mine. UNU and GIST workshop. 109
  25. Chang, J.S., Lee, K.Y., Lee, J.H., and Kim, K.W., 2006, Ecological risk assessment p53-biomarker of salamander in arsenic-contaminated abandoned mine, Korean Soc. Med. Biochem. Mol. Biol. autumn presentation, 207
  26. Chang, J.S., Yoon, I.H., Choe, E.Y., and Kim, K.W., 2005, Korean lungless salamander p53 gene as novel biomarker for genetoxins in arsenic-contaminated Nackdong mine areas, Korean Soc. Eco. Env. Geo., 189
  27. Chang, L.W., Hisa, S.M.T., Chan, P., and Hsieh, L., 1994, Macromolecular adducts: Biomarkers for toxicity and carcinogenesis, Annu. Rev. Pharmacol., 34, 41-67 https://doi.org/10.1146/annurev.pa.34.040194.000353
  28. Chee, Y.E., 2004, An ecological perspective on the valuation of ecosystem services, Biol. Conserv., 120, 549-565 https://doi.org/10.1016/j.biocon.2004.03.028
  29. Chen, C.J., Hsu, L.I., Wang, C.H., Shih, W.L., Hsu, Y.H., Tseng, M.P., Lin, Y.C., Chou, W.L., Chen, C.Y., Lee, C.Y., Wang, L.H., Cheng, Y.C., Chen, C.L., Chen, S.Y., Wang, Y.H., Hsueh, Y.M., Chiou, H.Y., and Wu, M.M., 2005, Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicol., Appl. Pharmacol. 206, 198-206 https://doi.org/10.1016/j.taap.2004.10.023
  30. Chen, Y., Lousis, C.M., Susan, K.G., Sawicki, J.A., and O`Brien, T.G., 2000, K6/ODC transgenic mice as a sensitive model for carcinogen identification. Toxicol. Lett., 116, 26-35
  31. Cheng, H.Y., Li, P., David, M., Smithgall, T.E., Feng, L., and Lieberman, M.W., 2004, Arsenic inhibition of the JAK-STAT pathway. Oncogene, 23, 3603-3612 https://doi.org/10.1038/sj.onc.1207466
  32. Chou, W.C., Hawkins, A.L., Barrett, J.F., Griffin, C.A., and Dang, C.V., 2001, Arsenic inhibition of telomerase transcription lead to genetic instability, J. Clin. Invest., 108, 1541-1547 https://doi.org/10.1172/JCI14064
  33. Cohen, R.R.H., 2006, Use of microbes for cost reduction of metal removal from metals and mining industry waste streams, J. Clean. Prod., 14, 1146-1157 https://doi.org/10.1016/j.jclepro.2004.10.009
  34. Danielle Rhine, E., Garcia-Dominguez, E., Phelps, C., and Young, L.Y., 2005, Environmental microbe can speciate and cycles arsenic, Environ. Sci. Technol., 39, 9569-9573 https://doi.org/10.1021/es051047t
  35. Davic, R.D. and Welsh Jr., H.H., 2004, On the ecological roles of salamander, Annu. Rev. Ecol. Evol. S., 35, 405-434 https://doi.org/10.1146/annurev.ecolsys.35.112202.130116
  36. Dhankher, O.P., Li, Y., Rosen, B.P., Shi, J., Salt, D., Senecoff, J.F., Sashti, N.A., and Meagher, R.B., 2002, Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and ${\gamma}$-glutamylcystein synthetase expression, Nat. Biotechnol., 20, 1140-1145 https://doi.org/10.1038/nbt747
  37. Douclef, M. and Terry, N., 2002, Pumping out of arsenic, Nat. Biotechnol., 20, 1094-1095
  38. Elizabeth, P.S., 2005, Phytoremediation, Annu. Rev. Plant Biol., 56, 15-39 https://doi.org/10.1146/annurev.arplant.56.032604.144214
  39. Filippova, M. and Duerksen-Hughes, P.J., 2003, Inorganic and dimethylated arsenic species induce cellular p53, Chem. Res. Toxicol., 16, 423-431 https://doi.org/10.1021/tx025606a
  40. Francesconi, K., Visoottiviseth, P., Sridokchan, W., and Goessler, W., 2002, Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils, Sci. Total Environ., 284, 27-35 https://doi.org/10.1016/S0048-9697(01)00854-3
  41. Galloway, T.S., Brown, R.J., Brown, M.A., Dissanayake, A., Lowe, D., Jones, M.B., and Depledge, M. H., 2004, A multibiomarker approach to environmental assessment. Environ. Sci. Technol., 38, 1723-1731 https://doi.org/10.1021/es030570+
  42. Gary, K., 2003, Arsenic, cancer, and thoughtless policy, Ecotox. Environ. Safe., 55, 139-142 https://doi.org/10.1016/S0147-6513(02)00042-8
  43. Germole, D.R., Spalding, J., Yu, H.S., Chen, G.S., Simeonova, P.P., Humble, M.C., Bruccoleri, A., Boorman, G.A., Foley, J.F., Yoshida, T., and Luster, M.I., 1998, Arsenic enhancement of skin neoplasia by chronic stimulation of growth factors, Am. J. Pathol., 153(6), 1775-1785 https://doi.org/10.1016/S0002-9440(10)65692-1
  44. Gihring, T.M. and Banfield, J.F., 2001, Arsenite oxidation and arsenate respiration by a new Thermus isolate, FEMS Microbiol. Lett., 204, 355-340
  45. Glick, B.R., 2003, Phytoremediation: synergistic use of plants and bacteria to clean up the environment, Biotechnol. Adv., 21, 383-393 https://doi.org/10.1016/S0734-9750(03)00055-7
  46. Haddow, A., 1955, The biochemistry of cancer, Annu. Rev. Biochem., 24, 689-742 https://doi.org/10.1146/annurev.bi.24.070155.003353
  47. Harvey, C.F., Swatrz, C.H., Badruzzaman, A.B.M., Keon-Blute, N., Yu, W., Ashraf Ali, M., Jay, J., Beckie, R., Niedan, V., Braband, D., Oates, P.M., Ashfaque, K.N., Islam, S., Hemond, H.F., and Ahmed, F., 2002, Arsenic mobility and groundwater extraction in Bangladesh, Science, 298, 1602-1606 https://doi.org/10.1126/science.1076978
  48. Hoeft, S.E., Kulp, T.R., Stolz, J.F., Hollibaugh, J.T., and Oremland, R.S., 2004, Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer, Appl, Env. Microbiol., 70(5), 2741-2747 https://doi.org/10.1128/AEM.70.5.2741-2747.2004
  49. Hood, R.D. and Pike, C.T., 1972, BAL alleviation of arsenateinduced teratogenesis in mice, Experimental Teratology, 6(2), 235-237 https://doi.org/10.1002/tera.1420060216
  50. Huang, C., Ke, Q., Costa, M., and Shi, X., 2004, Molecular mechanisms of arsenic carcinogenesis. Mol. Cell. Biochem., 255, 57-66 https://doi.org/10.1023/B:MCBI.0000007261.04684.78
  51. Irgolic, K.J., 1986, Arsenic in environment. In: Xavier, A.V. (Ed.), Frontiers in bioinorganic chemistry. V.C.H. Veragsgesellschaft, Weinheim, Germany, 308-399
  52. Ishinishi, N., Yamamoto, A., Hisanaga, A., and Inamasu, T., 1983, Tumorigenicity of arsenic trioxide to the lung in syrian golden hamsters by intermittent instillations, Cancer Lett., 21(2), 141-147 https://doi.org/10.1016/0304-3835(83)90200-8
  53. Jernelov, A. and Martin, A.L., 1975, Ecological implications of metal metabolism by microorganisms, Annu. Rev. Microbiol., 29, 61-77 https://doi.org/10.1146/annurev.mi.29.100175.000425
  54. Kalman, D.A., Hughes, J., Belle, G.v., Burbacher, T., Bolgiano, D., Coble, K., Karle Mottet, N., and Karim, B., Dany, R., Soussi, T., 2001, Regulation of the cell cycle by p53 after DNA damage in an amphibian cell line, Oncogene 20, 3766-3775 https://doi.org/10.1038/sj.onc.1204492
  55. Katsnelson, B.A., Neizvestnova, Y.M., and Blokhin, V.A., 1986, Stomach carcinogenesis induction by chronic treatment with arsenic (Russ.) Vopr. Onkol. 32, 68-73
  56. Kitchin, K.T., 2001, Recent advances in arseic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites, Toxicol. Appl. Pharmacol., 172, 671-679
  57. Langdon, C.J., Meharg, A.A., Feldmann, J., Balgar, T., Charnock, J., Farquhar, M., Piearce, T.G., Semple, K.T., and Cotter- Howells, J, 2002, Arsenic-speciation in arsenate-resistant and non-resistant population of the earthworm, Lumbricus rubells, J. Environ. Mon., 4, 608-630
  58. Langdon, C.J., Piearce, T.G., Meharg, A.A., and Semple, K.T., 2003, Interactions between earthworms and arsenic in the soil environmental: a review, Environ. Poll., 124, 361-373 https://doi.org/10.1016/S0269-7491(03)00047-2
  59. Langdon, C.J., Piearce, T.G., Meharg, A.A., and Semple, K.T., 1999, Resistance to arsenic-toxicity in a population of the earthworm Lumbricus rubellus, Soil Biol. Biochem., 31, 1963-1967 https://doi.org/10.1016/S0038-0717(99)00118-2
  60. Langdon, C.J., Piearce, T.G., Meharg, A.A., and Semple, K.T., 2001, Survival and behaviour of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from arsenate-contaminated and non-contaminated sutes, Soil Biol. Biochem., 33, 1239- 1244 https://doi.org/10.1016/S0038-0717(01)00029-3
  61. Langdon, C.J., Winters, C., Stûrzenbaum, S.R., Morgan, A.J., Charnock, J.M., Meharg, A.A., Piearce, T.G., Lee, P.H., and Semple, K.T., 2005, Ligand arsenic complexation and immunoperoxidase detection of metallothionein in the earthworm Lumbricus rubellus inhabiting arsenic-rich soil, Environ. Sci. Technol., 39, 2042-2048 https://doi.org/10.1021/es0490471
  62. Links, J.M. and Kensler, T.W., Groopman, J.D., 1995, Biomarkers and mechanistic approaches in environmental epidemiology, Annu. Rev. Publ. Health, 16, 83-103 https://doi.org/10.1146/annurev.pu.16.050195.000503
  63. Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., and Kennelley, E.D., 2001, A ferns that hyperaccumulates arsenic, Nature, 409, 579 https://doi.org/10.1038/35054664
  64. Macy, J.M., Nunan, K., Hagen, K.D., Dixon, D.R., Harbour, P.J., Cahull, M., and Sly, L.I., 1996, Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater, Int. J. Syst. Evol. Microbiol., 46(4), 1153- 1157 https://doi.org/10.1099/00207713-46-4-1153
  65. Min, M.S., Yang, S.Y., Bonett, R.M., Vieites, D.R., Brandon, R.A., and Wake, D.B., 2005, Discovery of the first Asian plethodontid salamander, Nature, 435, 87-90 https://doi.org/10.1038/nature03474
  66. Morikawa, H. and Erkin, O.C., 2003, Basic processes in phytoremediation and some applications to air pollution control, Chemosphere, 52, 1553-1558 https://doi.org/10.1016/S0045-6535(03)00495-8
  67. Morgan, A.J., Winters, C., and Yarwood, A., 1994, Speed-mapping of arsenic distribution in the tissues of earthworms inhabiting arsenious soil, Cell Biol. Inter., 18, 911-914 https://doi.org/10.1006/cbir.1994.1130
  68. Ng, J.C., Seawright, A.A., Qi, L., Garnett, C.M., Moore, M.M., and Chriswell, B., 1998, Tumors in mice induced by chronic exposure of high arsenic concentration in drinking water: in Book of abrstacts of the third international conference on arsenic exposure and health effects, July 12-15, San Diego, CA., 28
  69. Nguyen, V.A., 2006, Arsenic contamination in groundwater of Vietnam, GIST, Master`s degree
  70. Niemi, G.J. and McDonald, M.E., 2004, Application of ecological indicators, Annu. Rev. Ecol. Evol. Syst. 35, 89-111 https://doi.org/10.1146/annurev.ecolsys.35.112202.130132
  71. Oremland, R.S., Hoeft, S.E., Santini, J.M., Bano, N., Hollibaugh, R.A., and Hollibaugh, J.T., 2002, Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1, Appl. Env. Microbiol., 68(10), 4795-4802 https://doi.org/10.1128/AEM.68.10.4795-4802.2002
  72. Oremland, R.S. and Stolz, J.F., 2003, The ecology of arsenic, Science, 300, 939-944 https://doi.org/10.1126/science.1081903
  73. Pershagen, G., Nordberg, G., and Bjorklund, N.E., 1984, Carcinomas of the respiratory tract in hamsters given arsenic trioxide and/or benzo(a)pyrene by the pulmonary route, Environ. Res., 34, 227-241 https://doi.org/10.1016/0013-9351(84)90091-4
  74. Popovicova, J., Moser, G.J., Goldsworthy, T.L., and Tice, R.R., 2000, Carcinogenicity and co-carcinogenicity of sodium arsenite in p53+/− male mice, Toxicologist 54, 134
  75. Piearce, T.G., Langdon, C.J., Meharg, A.A., and Seplme, K.T., 2002, Yellow earthworms: distinctive pigmentation associated with arsenic-and copper-tolerance in Lumbticus rubellus, Soil Biol. Biochem., 34, 1833-1838 https://doi.org/10.1016/S0038-0717(02)00176-1
  76. Procházková, P., oeilerová, M., Felsberg, J., Josková, R., Beschin, A., Baetselier, P.D., and Bilej., 2006, Relationship between hemolytic molecules in Eisenia fetida earthworms, Dev. Comp. Immunol., 30, 381-392 https://doi.org/10.1016/j.dci.2005.06.014
  77. Rossman, T.G., 2003, Mechanism of arsenic carcinogenesis: an integrated approach, Mut. Res., 533, 37-65 https://doi.org/10.1016/j.mrfmmm.2003.07.009
  78. Salim, E.I., Wanibuchi, H., Yamamoto, S., Morimura, K., and Fukushima, S., 1999, Carcinogenicity of dimethylarsnic acid (DMAA) in p53 knockout and wild type C57BL/6T mice, Proc. Am. Assoc. Cancer Re., 40, 2335
  79. Saltikov, C.W. and Newman, D.K., 2003, Genetic identification of a respiratory arsenate reductase, Proc. Nati. Acad. Sci. U.S.A., 100(19), 10983-10988
  80. Santini, J.M., Sly, L.I., Wen, A., Comrie, D., Wulf-Durand, P.D., and Macy, J.M., 2002, New arsenite-oxidizing bacteria isolated from Australian gold mining environments-phylogenetic relationships, Geomicrol. J., 19, 67-76 https://doi.org/10.1080/014904502317246174
  81. Santini, J.M., Steinmann, Iii C.A., and Vanden Hoven, R.N., 2004, Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine, Int. J. Syst. Evo. Microbiol., 54, 2241-2244 https://doi.org/10.1099/ijs.0.63059-0
  82. Silver, S. and Misra, T.K., 1988, Plasmid-mediated heavy metal resistances, Annu. Rev. Microbiol., 42, 717-743 https://doi.org/10.1146/annurev.mi.42.100188.003441
  83. Silver, S., 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50, 753-789 https://doi.org/10.1146/annurev.micro.50.1.753
  84. Sparks, D.L., 2003, Environmental soil chemistry, Academic press, Chapter 1, 1-41
  85. Spiegelman, S. and Landman, O.E., 1954, Genetics of microorganisms, Annu. Rev. Microbiol., 8, 181-236 https://doi.org/10.1146/annurev.mi.08.100154.001145
  86. Spurgeon, D.J., Stûrzenbaum, S.R., Svendsen, C., Hankard, P.K., Morgan, A.J., Weeks, J.M., and Kille, P., 2004, Toxicological, cellular and gene expression responses in earthworms exposed to copper and cadmium, Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 138, 11-21 https://doi.org/10.1016/j.cca.2004.04.003
  87. Srivastava, M., Ma, L.Q., Singh, N., and Singh, S., 2005, Antioxidant respenses of hyper-accumulator and sensitive fern species to arsenic, J. Exp. Bot., 56(415), 1335-1342 https://doi.org/10.1093/jxb/eri134
  88. Stephension, G.L., Kaushik, A., Kaushil, N.K., Solmon, K.R., Steele, T., and Scroggins, R.P., 1997, Use of an avoidanceresponse test to assess the toxicity of contaminated soils to earthworms, In: Sheppard, S.C., Bembridge, J.D., Holmstrup, M., Posthuma., L., (Eds.), Advances in Earthworm ecotoxicology, SETAC technical publications series, Pensacola, Florida, USA, 67-81
  89. Stolz, J.F., Basu, P., Santini, J.M., and Oremland, R.S., 2006, Arsenic and selenium in microbial metabolism, Annu. Rev. Microbiol., 60, 107-130 https://doi.org/10.1146/annurev.micro.60.080805.142053
  90. Stûrzenbaum, S.R., Georgien, O., John Mogan, A., and Kille, P., 2004, Cadmium detoxification in earthworms: from genes to cells, Environ. Sci. Technol., 38, 6283-6289 https://doi.org/10.1021/es049822c
  91. Stûrzenbaum, S.R., Kille, P., and Morgan, A.J., 1998, The identification, cloning and characterization of earthworm metallothionein, FEBS Lett., 431, 437-442 https://doi.org/10.1016/S0014-5793(98)00809-6
  92. Summers, A.O. and Silver, S., 1978, Microbial transformations of metals, Annu. Rev. Microbiol, 32, 637-672 https://doi.org/10.1146/annurev.mi.32.100178.003225
  93. Tchounwou, P.B., Centeno, J.A., and Patlolla, A.K., 2004, Arsenic toxicity, mutagenesis, and carcinogenesis-a health risk assessment and management approach, Mol. Cell. Biochem., 255, 47-55 https://doi.org/10.1023/B:MCBI.0000007260.32981.b9
  94. US EPA, 2001, 40CFR Parts 9, 141 and 142, national primary drinking water regulations, Arsenic and clarifications to compliance and new source contaminants monitoring, Final rule, Fed. Reg. 66(14), 6975-7066
  95. Waalkes, M., Liu, J., Ward, J.M., and Diwan, B.A., 2004, Animal models for arsenic carcinogenesis: inorganic arsenic is a transplacental carcinogen in mice, Toxicol. Appl. Pharmacol., 198, 377-384 https://doi.org/10.1016/j.taap.2003.10.028
  96. Wang, G., 1984, Arsenic poisoning from drinking water in Xinjiang, Chin. J. Prevent. Med., 18, 105-107
  97. Wang, J.P., Qi, L., Moore, M.R., and Ng, J.C., 2002, A review of animal models for the study of arsenic carcinogenesis. Toxicol. Lett., 133, 17-31 https://doi.org/10.1016/S0378-4274(02)00086-3
  98. Wanibuchi, H., Salim, E.I., Kinoshita, A., Shen, J., Wei, M., Morimura, K., Yoshida, K., Kuroda, K., Endo, G., and Shoji, F., 2004, Understanding arsenic carcinogenicity by the use of animal models. Toxicol. Appl. Pharmacol., 198, 366-376 https://doi.org/10.1016/j.taap.2003.10.032
  99. Xia, H. and Cai, X., 2002, Ecological restoration technologies for mined lands: a review, Ying Yong Sheng Tai Xue Bao, 13(11), 1471-1417
  100. Yamamoto, S., Konish, Y., Matsuda, T., Murai, T., Shibata, M.A., Matsui-Yuasa, I., Otani, S., Kuroda, K., Endo, G., and Fukushima, S., 1995, Cancer induction by an organic arsenic compound, dimethylarsinic acid (cacodylic acid), in F344/DuCrj rats after pretreatment with five carcinogens, Cancer Res., 55(6), 1271-1276
  101. Yeates, G.W., Orchard, V.A., Speir, T.W., Hunt, J.L., and Hermans, M.C.C., 1994, Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity, Biol. Fertil. Soil., 18, 200-208 https://doi.org/10.1007/BF00647667
  102. Yu, H.S., Liao, W.T., and Chai, C.Y., 2006, Arsenic carcinogenesis in the skin, J. Biochem. Sci., In press