Multiple Constraint Routing Protocol for Frequency Diversity Multi-channel Mesh Networks using Interference-based Channel Allocation

  • Torregoza, John Paul (Dept. of Computer Science, Inje University) ;
  • Hwang, Won-Joo (Dept. of Information and Communications Engineering, Inje Engineering Institue, Inje University)
  • Published : 2007.12.30

Abstract

Wireless Mesh Networks aim to attain large connectivity with minimum performance degradation, as network size is increase. As such, scalability is one of the main characteristics of Wireless Mesh Networks that differentiates it from other wireless networks. This characteristic creates the need for bandwidth efficiency strategies to ensure that network performance does not degrade as the size of the network increase. Several researches have been done to realize mesh networks. However, the researches conducted were mostly focused on a per TCP/IP layer basis. Also, the studies on bandwidth efficiency and bandwidth improvement are usually dealt with as separate issues. This paper aims to simultaneously study bandwidth efficiency and improvement. Aside from optimizing the bandwidth given a fixed capacity, the capacity is also increased using results of physical layer studies. In this paper, the capacity is improved by using the concept of non-overlapping channels for wireless communication. A channel allocation scheme is conceptualized to choose the transmission channel that would optimize the network performance parameters with consideration of chosen Quality of Service (QoS) parameters. Network utility maximization is used to optimize the bandwidth after channel selection. Furthermore, a routing scheme is proposed using the results of the network utilization method and the channel allocation scheme to find the optimal path that would maximize the network gain.