Small Target Detection with Clutter Rejection using Stochastic Hypothesis Testing

  • Published : 2007.12.30

Abstract

The many target-detection methods that use forward-looking infrared (FUR) images can deal with large targets measuring $70{\times}40$ pixels, utilizing their shape features. However, detection small targets is difficult because they are more obscure and there are many target-like objects. Therefore, few studies have examined how to detect small targets consisting of fewer than $30{\times}10$ pixels. This paper presents a small target detection method using clutter rejection with stochastic hypothesis testing for FLIR imagery. The proposed algorithm consists of two stages; detection and clutter rejection. In the detection stage, the mean of the input FLIR image is first removed and then the image is segmented using Otsu's method. A closing operation is also applied during the detection stage in order to merge any single targets detected separately. Then, the residual of the clutters is eliminated using statistical hypothesis testing based on the t-test. Several FLIR images are used to prove the performance of the proposed algorithm. The experimental results show that the proposed algorithm accurately detects small targets (Jess than $30{\times}10$ pixels) with a low false alarm rate compared to the center-surround difference method using the receiver operating characteristics (ROC) curve.