Differences in Microbial Activities of Faeces from Weaned and Unweaned Pigs in Relation to In vitro Fermentation of Different Sources of Inulin-type Oligofructose and Pig Feed Ingredients

  • Shim, S.B. (Animal Nutrition Group, Department of Animal Science, Wageningen University) ;
  • Verdonk, J.M.A.J. (Animal Sciences Group, Wageningen University and Research Centre) ;
  • Pellikaan, W.F. (Animal Nutrition Group, Department of Animal Science, Wageningen University) ;
  • Verstegen, W.A. (Animal Nutrition Group, Department of Animal Science, Wageningen University)
  • Received : 2006.02.21
  • Accepted : 2007.04.03
  • Published : 2007.09.01


An in vitro experiment was conducted to evaluate the differences in microbial activity of five faecal inocula from weaned pigs and one faecal inoculum from unweaned pigs in combination with 6 substrates. The substrates tested were negative control diet, corn, soybean meal, oligofructose (OF), ground chicory roots and a mixture (60% chicory pulp and 40% OF). The inocula used were derived from pigs fed either a corn-soy based diet without antibiotics (NCON), the NCON diet supplemented with oligofructose (OF), a mixture of chicory pulp (40%) and OF (60%) (MIX), ground chicory roots (CHR) or the NCON diet supplemented with antibiotics (PCON). The cumulative gas production measured fermentation kinetics and end products, such as total gas production, ammonia and volatile fatty acids, were also determined. Both the substrate and the inoculum significantly affected the fermentation characteristics. The cumulative gas production curve showed that different substrates caused more differences in traits of fermentation kinetics than the different inocula. Inocula of weaned pigs gave a significantly higher VFA production compared to the inoculum from unweaned animals, whilst the rate of fermentation and the total gas produced did not differ. OF showed the highest fermentation kinetics and the lowest $NH_3$, pH and OM loss compared to other substrates. It was concluded that the microbial activity was significantly affected by substrate and inoculum. Inoculum from weaned pigs had more potential for microbial fermentation of the carbohydrate ingredients and oligofructose than that of unweaned pigs. A combination of high and low polymer inulin may be more beneficial to the gut ecosystem than using high- or low-polymer inulin alone.


  1. Awati, A., S. R. Konstantinov, B. A. Williams, A. D. L. Akkermans, M. W. Bosch, H. Smidt and M. W. A. Verstegen. 2005. Effect of substrate adaptation on the microbial fermentation and microbial composition of faecal microbiota of weaning piglets studied in vitro. J. Sci. Food Agric. 85:1765-1772
  2. Bauer, E., B. A. Williams, M. W. Bosch, C. Voigt, R. Mosenthin and M. W. A. Verstegen. 2004. Differences in microbial activity of digesta from three sections of the porcine large intestine according to in vitro fermentation of carbohydraterich substances. J. Sci. Food Agric. 84, 15:2097-2104
  3. Bauer, E., B. A. Williams, C. Voigt, R. Mosenthin and M. W. A. Verstegen. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 73:313-322
  4. Cummings, J. H. and G. T. Macfarlane. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70:443-459
  5. Dong, G. Z. and J. R. Pluske. 2007. The low feed intake in newlyweaned pigs: problems and possible solutions. Asian-Aust. J. Anim. Sci. 20(3):440-452
  6. Estrada, A., M. D. Drew and A. van Kessel. 2001. Effect of the dietary supplementation of fructooligosaccharides and Bifidobacterium longum to early-weaned pigs on performance and fecal bacterial populations. Can. J. Anim. Sci. 81:141-148
  7. Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125:1401-1412
  8. Groot, J. C. J., J. W. Cone, B. A. Williams, F. M. A. Debersaques and E. A. Lantinga. 1996. Multi-phasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64:77-89
  9. He, G., S. K. Baidoo, Q. Yang, D. Golz and B. Tungland. 2002. Evaluation of chicory inulin extracts as feed additive for earlyweaned pigs. J. Anim. Sci. 80(Suppl. 1):81(Abstr.)
  10. Houdijk, J. G. M. 1998a. Effects of non-digestible oligosaccharides in young pig diets. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands
  11. Houdijk, J. G. M., S. Bosch, S. Tamminga, M. W. A. Verstegen, E. B. Berenpas and H. Knoop. 1999. Apparent ileal and total-tract nutrient digestion by pigs as affected by dietary non-digestible oligosaccharides. J. Anim. Sci. 77:148-158
  12. Houdijk, J. G. M., S. Bosch, M. W. A. Verstegen and E. B. Berenpas. 1998b. Effects of dietary oligosaccharides on the growth performance and faecal characteristics of young growing pigs. Anim. Feed Sci. Technol. 71:35-48
  13. Houdijk, J. G. M., R. Hartemink, R. Bosch and M. W. A. Verstegen. 2002a. Effects of dietary non-digestible oligosaccharides on microbial characteristics differ between ileal chyme and faeces in weaned pigs. Arch. Anim. Nutr. 56:297-307
  14. Houdijk, J. G. M., M. W. A. Verstegen, M. W. Bosch and K. L. M. van Laere. 2002b. Dietary fructooligosaccharides and transgalactooligosaccharides can affect fermentation characteristics in gut contents and potential plasma of growing pigs. Livest. Prod. Sci. 73:175-184
  15. Houdijk, J. G. M., B. A. Williams, S. Tamminga and M. W. A. Verstegen. 1997. Relation between in vivo and in vitro fermentation of oligosaccharides in weaner pigs. In: Proceedings of the British Society of Animal Science. 59(Abstr.)
  16. ISO 5984. 1978. International Organization for Standardization, Animal Feeding stuffs-Determination of crude ash (ISO 5984)
  17. ISO 6496. 1999. International Organization for Standardization, Animal feeding stuffs-Determination of moisture and other volatile matter content (ISO 6496)
  18. Lowe, S. E., M. K. Thodorou, A. P. J. Trinci and R. B. Hespell. 1985. Growth of anaerobic rumen fungi on defined and semidefined media lacking rumen fluid. J. Gen. Microbiol. 131:2225-2229
  19. Macfarlane, G. T., G. R. Gibson, E. Beatty and J. H. Cummings. 1992. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol. Ecol. 101:81-88
  20. Mathew, A. G., W. G. Upchurch and S. E. Chattin. 1998. Incidence of antibiotic resistance in fecal Escherichia coli isolatd from commercial swine farms. J. Anim. Sci. 76:429-434
  21. Metzler, B., E. Bauer and R. Mosenthin. 2005. Microflora management in the gastrointestinal tract of piglets. Asian-Aust. J. Anim. Sci. 18(9):1353-1362
  22. National Research Council. 1998. Nutrient requirements of swine. 10th Ed. National Academy Press, Washington, DC
  23. Pluske, J. R., D. W. Pethick, Z. Durmic, D. J. Hampson and B. P. Mulan. 1999. Non-starch polysaccharides in pig diets and their influence on intestinal microflora, digestive physiology and enteric disease. In: Recent Advances in Animal Nutrition (Ed. P. C. Garnsworthy and J. Wiseman). Nottingham University Press. pp. 189-226
  24. Roberfroid, M. B., J. A. Van Loo and G. R. Gibson. 1998. The bifidogeneic nature of chicory inulin and its hydrolysis products. J. Nutr. 128:11-19
  25. Roediger, W. E. W. 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793- 798
  26. SAS Institute Inc. 2003. SAS/STAT User's Guide: Version 6, Vol. 2, 4th Ed. SAS Institute Inc., Cary, Noth Carolina
  27. Schlegel, H. G. 1992. General Microbiology. 7th Ed. University Press, Cambridge
  28. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. A. France. 1994. Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197
  29. Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol. 48:61-65
  30. Van Loo, J. 2004. The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutr. Res. Rev. 17:89-98
  31. Williams, B. A., M. W. Bosch, A. Awati, S. R. Konstantinov, H. Smidt, A. D. L. Akkermans, M. W. A. Verstegen and S. Tamminga. 2005. In vitro assessment of gastrointestinal tract (GIT) fermentation in pigs: fermentable substrates and microbial activity. Anim. Res. 54:191-201
  32. Williams, B. A., M. W. A. Verstegen and S. Tamminga. 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 14:207-227
  33. Williams, B. A., C. Voigt and M. W. A. Verstegen. 1998. The faecal microbial population can be representative of large intestinal microfloral activity. In: Proceedings of the British Society of Animal Science. 165 (Abstr.)
  34. Xu, Z. R., X. T. Zou, C. H. Hu, M. S. Xia, X. A. Zhan and M. Q. Wang. 2002. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of growing pigs. Asian-Aust. J. Anim. Sci. 15(12):1784-1789

Cited by

  1. DSM 16998 vol.7, pp.1, 2016,