Adsorption and Storage of Hydrogen by Nanoporous Adsorbents

나노세공체 흡착제에 의한 수소 흡착 및 저장

  • Jhung, Sung Hwa (Green Chemistry & Catalysis Research Center, Korea Research Institute of Chemical Technology) ;
  • Chang, Jong-San (Green Chemistry & Catalysis Research Center, Korea Research Institute of Chemical Technology)
  • 정성화 (한국화학연구원 그린화학촉매연구센터) ;
  • 장종산 (한국화학연구원 그린화학촉매연구센터)
  • Received : 2007.01.10
  • Published : 2007.04.10

Abstract

Efficient and inexpensive hydrogen storage is an essential prerequisite for the utilization of hydrogen, one of the new and clean energy sources for $21^{st}$ century. In this review, several storage techniques are briefly reviewed and compared. Especially, adsorption/storage via physisorption at low temperature, by using nanoporous adsorbents, is reviewed and evaluated for further developments. The adsorption over a porous material at low temperature is currently investigated deeply to fulfill the storage target. In this review, several characteristics needed for the high hydrogen adsorption capacity are introduced. It may be summarized that following characteristics are necessary for high storage capacity over porous materials: i) high surface area and micropore volume, ii) narrow pore size, iii) strong electrostatic field, and iv) coordinatively unsaturated sites, etc. Moreover, typical results demonstrating high storage capacity over nanoporous materials are summarized. Storage capacity up to 7.5 wt% at liquid nitrogen temperature and 80 atm is reported. Competitive adsorbents that are suitable for hydrogen storage may be developed via intensive and continuous studies on design, synthesis, manufacturing and modification of nanoporous materials.

Acknowledgement

Supported by : 한국화학연구원

References

  1. L. Schlapbach, A. Züttel, Nature, 414, 353 (2001) https://doi.org/10.1038/35104634
  2. A. M. Seayad and D. M. Antonelli, Adv. Mater., 16, 765 (2004) https://doi.org/10.1002/adma.200306557
  3. A. Zuttel, Mater. Today, 6, 24 (2003)
  4. R. F. Service, Sicence, 305, 958 (2004) https://doi.org/10.1126/science.305.5686.958
  5. M. Conte, A. Iacobazzi, M. Ronchetti, and R. Vellone, J. Power Source, 100, 171 (2001) https://doi.org/10.1016/S0378-7753(01)00893-X
  6. J. L. C. Rowsell and O. M. Yaghi, Angew. Chem., Int. Ed., 44, 4670 (2005) https://doi.org/10.1002/anie.200462786
  7. A. Zecchina, S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bjorgen, and K. P. Lillerud, J. Am. Chem. Soc., 127, 6361 (2005) https://doi.org/10.1021/ja050276c
  8. F. L. Darkrim, P. Malbrunot, and G. P. Tartaglia, Int. J. Hydrogen Energy, 27, 193 (2002) https://doi.org/10.1016/S0360-3199(01)00103-3
  9. A. C. Dillon, M. J. Heben, Appl. Phys. A, 72, 133 (2001) https://doi.org/10.1007/s003390100788
  10. Y.-S. Lee and S.-D. Kim, Prospective Ind. Chem., 9, 29 (2006)
  11. R. Strobel, J. Garche, P. T. Moseley, L. Jrissen, and G. Wolf, J. Power Source, 159, 781 (2007) https://doi.org/10.1016/j.jpowsour.2006.03.047
  12. http://www.h-workshop.uni-konstanz.de/pdf/Eberle_Ulrich.pdf
  13. www.composite.co.kr
  14. 서울경제신문, 2006. 1. 13일자
  15. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985) https://doi.org/10.1351/pac198557040603
  16. D. W. Breck, Zeolite Molecular Sieves, 1974, John Wiley & Sons, New York
  17. S. T. Wilson, Stud. Surf. Sci. Catal., 137, 229 (2001) https://doi.org/10.1016/S0167-2991(01)80247-0
  18. A. Stein, Adv. Mater., 15, 763 (2003) https://doi.org/10.1002/adma.200300007
  19. M. E. Davis, Nature, 417, 813 (2002) https://doi.org/10.1038/nature00785
  20. O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature, 423, 705 (2003) https://doi.org/10.1038/nature01650
  21. G. Ferey, C. Mellot-Draznieks, C. Serre, and F. Millange, Acc. Chem. Res., 38, 217 (2005)
  22. C. N. R. Rao, S. Natarajan, and R. Vaidhyanathan, Angew. Chem. Int. Ed., 43, 1466 (2004) https://doi.org/10.1002/anie.200300588
  23. S. Kitagawa, R. Kitaura, and S.-I. Noro, Angew. Chem. Int. Ed., 43, 2334 (2004)
  24. S. L. James, Chem. Soc. Rev., 32, 276 (2003) https://doi.org/10.1039/b200393g
  25. A. K. Cheetham, C. N. R. Rao, and R. K. Feller, Chem. Commun., 4780 (2006)
  26. N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Nature, 408, 50 (2000)
  27. U. Vietze, O. KrauB, F. Laeri, G. Ihlein, F. Schüth, B. Limburg, and M. Abraham, Phys. Rev. Letter, 81, 4628 (1998)
  28. Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, and D. G. Vlachos, Science, 300, 456 (2003)
  29. H. W. Langmi, A. Walton, M. M. Al-Mamouri, S. R. Johnson, D. Book, J. D. Speight, P. P. Edwards, I. Gameson, P. A. Anderson, and I. R. Harris, J. Alloys Compd, 356, 710 (2003)
  30. M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, Appl. Phys. A, 72, 619 (2001) https://doi.org/10.1007/s003390100847
  31. J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, J. Am. Chem. Soc., 126, 5666 (2004) https://doi.org/10.1021/ja049408c
  32. A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, J. Am. Chem. Soc., 128, 3494 (2006)
  33. J. Pang, J. E. Hampsey, Z. Wu, Q. Hu, and Y. Lu, Appl. Phys. Letter, 85, 4887 (2004) https://doi.org/10.1063/1.1827338
  34. S. H. Jhung, J. W. Yoon, H.-K. Kim, and J.-S. Chang, Bull. Kor. Chem. Soc., 26, 1075 (2005)
  35. H. Frost, T. Du1ren, and R. Q. Snurr, J. Phys. Chem. B, 110, 9565 (2006) https://doi.org/10.1021/jp060433+
  36. M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J.-S. Chang, S. H. Jhung, and G. Frey, Angew. Chem. Int. Ed., 45, 8227 (2006)
  37. M. Dinc, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann, and J. R. Long, J. Am. Chem. Soc., 128, 16876 (2006) https://doi.org/10.1021/ja0656853
  38. S. H. Jhung, H.-K. Kim, J. W. Yoon, and J.-S. Chang, J. Phys. Chem. B, 110, 9371 (2006)
  39. A. Ansón, J. Jagiello, J. B. Parra, M. L. Sanjuán, A. M. Benito, W. K. Maser, and M. T. Martnez, J. Phys. Chem. B, 108, 15820 (2004) https://doi.org/10.1021/jp047253p
  40. L. Pan, M. B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, and J. K. Johnson, J. Am. Chem. Soc., 126, 1308 (2004) https://doi.org/10.1021/ja0392871
  41. M. Dinca and J. R. Long, J. Am. Chem. Soc., 127, 9376 (2005) https://doi.org/10.1021/ja0523082
  42. X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, and M. J. Rosseinsky, Science, 306, 1012 (2004) https://doi.org/10.1126/science.1101982
  43. H. Chun, D. N. Dybtsev, H. Kim, and K. Kim, Chem. Eur. J., 11, 3521 (2005) https://doi.org/10.1002/chem.200401201
  44. B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, and W. Lin, Angew. Chem. Int. Ed., 44, 72 (2005) https://doi.org/10.1002/anie.200461214
  45. J. Y. Lee, L. Pan, S. P. Kelly, J. Jagiello, T. J. Emge, and J. Li, Adv. Mater., 17, 2703 (2005) https://doi.org/10.1002/adma.200500867
  46. M. Rzepka, P. Lamp, and M. A. de la Casa-Lillo, J. Phys. Chem. B, 102, 10894 (1998)
  47. I. Efremenko and M. Sheintuch, Langmuir, 21, 6282 (2005) https://doi.org/10.1021/la046757b
  48. J. Weitkamp, M. Fritz. and S. Ernst, Int. J. Hydrogen Energy, 20, 967 (1995) https://doi.org/10.1016/0360-3199(95)90032-2
  49. D. Fraenkel and J Shabtai, J. Am. Chem. Soc., 99, 7074 (1977) https://doi.org/10.1021/ja00463a058
  50. S. H. Jhung, J. S. Lee, J. W. Yoon, and J.-S. Chang, submitted (2007)
  51. S. H. Jhung, J. W. Yoon, J. S. Lee, and J.-S. Chang, Chem. Eur. J., accepted (2007)
  52. V. B. Kazansky, V. Yu. Vorovkov, A. Serich, and H. G. Karge, Micropor. Mesopor. Mater., 22, 251 (1998)
  53. V. B. Kazansky, J. Mol. Catal., 141, 83 (1999)
  54. P. M. Forster, J. Eckert, J.-S. Chang, S.-E. Park, G. Frey, and A. K. Cheetham, J. Am. Chem. Soc., 125, 1309 (2003)
  55. P. M. Forster, J. Eckert, B. D. Heiken, J. B. Parise, J. W. Yoon, S. H. Jhung, J.-S. Chang, and A. K. Cheetham, J. Am. Chem. Soc., 128, 16846 (2006)
  56. S. Ma and H.-C. Zhou, J. Am. Chem. Soc., 128, 11734 (2006)
  57. D. Sun, S. Ma, Y. Ke, D. J. Collins, and H.-C. Zhou, J. Am. Chem. Soc., 128, 3896 (2006)
  58. S. K. Bhatia and A. L. Myers, Langmuir, 22, 1688 (2006) https://doi.org/10.1021/la0523816
  59. S. S. Kaye and J. R. Long, J. Am. Chem. Soc., 127, 6506 (2005) https://doi.org/10.1021/ja051168t
  60. J. L. C. Rowsell, J. Eckert, and O. M. Yaghi, J. Am. Chem. Soc., 127, 14904 (2005) https://doi.org/10.1021/ja0542690
  61. J. L. C. Rowsell, E. C. Spencer, J. Eckert, J. A. K. Howard, and O. M. Yaghi, Science, 309, 1350 (2005) https://doi.org/10.1126/science.1113247
  62. B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, and O. M. Yaghi, Angew. Chem. Int. Ed., 44, 4745 (2005) https://doi.org/10.1002/anie.200462787
  63. Q. Yang and C. Zhong, J. Phys. Chem. B, 109, 11862 (2005) https://doi.org/10.1021/jp051903n
  64. Q. Yang and C. Zhong, J. Phys. Chem. B, 110, 655 (2006) https://doi.org/10.1021/jp055908w
  65. X. B. Zhao, B. Xiao, A. J. Fletcher, and K. M. Thomas, J. Phys. Chem. B, 109, 8880 (2005) https://doi.org/10.1021/jp050080z
  66. Z. H. Zhu, G. Q. Lu, and H. Hatori, J. Phys. Chem. B, 110, 1249 (2006) https://doi.org/10.1021/jp0516590
  67. Y. Li and R. T. Yang, J. Am. Chem. Soc., 128, 726 (2006) https://doi.org/10.1021/ja056831s
  68. Y. Li and R. T. Yang, J. Am. Chem. Soc., 128, 8136 (2006) https://doi.org/10.1021/ja061681m
  69. A. J. Lachawiec, Jr., G. Qi, and R. T. Yang, Langmuir, 21, 11418 (2005) https://doi.org/10.1021/la051659r
  70. H.-S. Kim, H. Lee, K.-S. Han, J.-H. Kim, M.-S. Song, M.-S. Park, J-Y. Lee, and J.-K. Kang, J. Phys. Chem. B, 109, 8983 (2005)
  71. P. Chen, X. Wu, J. Lin, and K. L. Tan, Science, 285, 91 (1999) https://doi.org/10.1126/science.285.5430.999
  72. R. T. Yang, Carbon, 38, 623 (2000) https://doi.org/10.1016/S0008-6223(99)00273-0
  73. E. Yoo, L. Gao, T. Komatsu, N. Yagai, K. Arai, T. Yamazaki, K. Matsuishi, T. Matsumoto, and J. Nakamura, J. Phys. Chem. B, 108, 18903 (2004) https://doi.org/10.1021/jp047056q
  74. G. E. Froudakis, Nano Letter, 1, 531 (2001) https://doi.org/10.1021/nl0155983
  75. G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, and A. Percheron-Gugan, Chem. Commun., 2976 (2003)
  76. E. Y. Lee and M. P. Suh, Angew. Chem. Int. Ed., 43, 2798 (2004) https://doi.org/10.1002/anie.200353494
  77. D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, and K. Kim, J. Am. Chem. Soc., 126, 32 (2004) https://doi.org/10.1021/ja038678c
  78. S. M. Humphrey, J.-S. Chang, S. H. Jhung, J. W. Yoon, and P. T. Wood, Angew. Chem. Int. Ed., 46, 272 (2007)
  79. I. Won, J. S. Seo, J. H. Kim, H. S. Kim, Y. S. Kang, S.-J. Kim, Y. Kim, and J. Jegal, Adv. Mater., 17, 80 (2005)
  80. J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. Jeon, and K. Kim, Nature, 404, 982 (2000) https://doi.org/10.1038/35010088
  81. H. R. Moon, J. H. Kim, and M. P. Suh, Angew. Chem. Int. Ed., 44, 1261 (2005) https://doi.org/10.1002/anie.200461408
  82. E.-Y. Choi, K, Park, C.-M. Yang, H. Kim, J.-H. Son, S. W. Lee, Y. H. Lee, D. Min, and Y.-U. Kwon, Chem. Eur. J., 10, 5535 (2004)
  83. Y. S. Kim, Y. Go. J. Kim, N. Jeong, and H. K. Chae, Bull. Kor. Chem. Soc., 23, 907 (2002) https://doi.org/10.5012/bkcs.2002.23.6.907
  84. J. Y. Choi, J. Kim, S. H. Jhung, H.-K. Kim, J.-S.Chang, and H. K. Chae, Bull. Kor. Chem. Soc., 27, 1523 (2006) https://doi.org/10.5012/bkcs.2006.27.10.1523
  85. T. B. Lee, D. Kim, D. H. Jung, S. B. Choi, J. H. Yoon, J. Kim, K. Choi, and S.-H. Choi, Catal.Today, 120, 330 (2006)
  86. S. H. Jhung, J.-H. Lee, and J.-S. Chang, Bull. Kor. Chem. Soc., 26, 880 (2005)
  87. S. H. Jhung, J.-H. Lee, P. M. Forster, G. Ferey, A. K. Cheetham, and J.-S. Chang, Chem. Eur. J., 12, 7899 (2006)
  88. S. H. Jhung, J.-H. Lee, C. Serre, G. Ferey, and J.-S. Chang, Adv. Mater., 19, 121 (2007)
  89. J. W. Yoon, S. H. Jhung, Y. K. Hwang, S. M. Humphrey, P. T. Wood, and J.-S. Chang, Adv. Mater., accepted (2007)