DOI QR코드

DOI QR Code

Antioxidant Favors the Developmental Competence of Porcine Parthenogenotes by Reducing Reactive Oxygen Species

  • Hossein, Mohammad Shamim (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Kim, Yeun Wook (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Park, Seon Mi (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Koo, Ok Jae (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Hashem, Md Abul (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Bhandari, Dilip P (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Jeong, Yeon Woo (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Kim, Sue (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Kim, Ji Hye (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Lee, Eu Gine (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Park, Sun Woo (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Kang, Sung Keun (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Lee, Byeong Chun (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University) ;
  • Hwang, Woo Suk (Department of Theriogenology and Biotechnology, College of Veterinary Medicine Seoul National University)
  • Received : 2006.04.14
  • Accepted : 2006.07.12
  • Published : 2007.03.01

Abstract

Reactive oxygen species (ROS) generate during electrical activation of oocytes which has detrimental effects on embryo survival when overwhelmed. The present study was designed to investigate the ability of L-ascorbic acid, a novel water soluble antioxidant, to reduce the ROS level in developing embryos and their subsequent effects on embryo development in vitro. The compact cumulus oocyte complexes (COCs) were cultured in tissue culture medium (TCM)-199 supplemented with 10 ng/ml epidermal growth factor, 4 IU/ml pregnant mare serum gonadotropin (PMSG), and human chorionic gonadotropin (hCG) and 10% (v/v) porcine follicular fluid (pFF) for 44 h. After maturation culture, the denuded oocytes were activated with a single DC pulse of 2.0 kV/cm in 0.3 M mannitol solution containing 0.5 mM of HEPES, 0.1 mM of $CaCl_2$ and 0.1 mM of $MgCl_2$ for $30{\mu}s$ using a BTX Electro-cell Manipulator. The activated oocytes were cultured in modified North Carolina State University-23 (mNSCU-23) medium for 168 h. The level of $H_2O_2$ in each embryo was measured by the dichlorohydrofluorescein diacetate (DCHFDA) method at 48 h after activation. The blastocyst formation rate was significantly higher when culture medium was supplemented with 50 and $100{\mu}M$ L-ascorbic acid (31.2 and 38.7%, respectively) compared to non-supplemented (16.1%) group. Accordingly, significantly more cells in blastocyst were found for 50 and $100{\mu}M$ L-ascorbic acid (50.0 and 56.4, respectively) compared to 0 and $200{\mu}M$ L-ascorbic acid (36.5 and 39.8, respectively). L-ascorbic acid reduces the $H_2O_2$ level in developing embryos in a dose-dependant manner. The $H_2O_2$ level (pixels/ embryos) was 191.5, 141.0, 124.0 and 163.3 for 0, 50, 100 and $200{\mu}M$ L-ascorbic acid, respectively. So, we recommend to supplement 50 or $100{\mu}M$ L-ascorbic acid in porcine in vitro culture medium.

References

  1. Buettner, G. R. 1993. The pecking order of free radicals and antioxidants: lipid peroxidation, ${\alpha}-tocopherol$, and ascorbate. Arch. Biochem. Biophys. 300: 535-543. https://doi.org/10.1006/abbi.1993.1074
  2. Fissore, R. A., J. Smyth, M. Kurokawa and P. Collas. 2002. Activation of mammalian oocytes. In: Principles of cloning (Ed. J. Cibelli, R. P. Lanza, K. H. S. Campbell and M. D. West). Acad. Press, USA. pp. 21-45.
  3. Rose, R. C. and A. M. Bode. 1993. Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 7:1135-1142. https://doi.org/10.1096/fasebj.7.12.8375611
  4. Takahashi, M., T. Nagai, S. Hamano, M. Kuwayama, N. Okamura and A. Okano. 1993. Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49:228-232. https://doi.org/10.1095/biolreprod49.2.228
  5. Thouas, G. A., N. A. Korfiatis, A. J. French, G. M. Jones and A. O. Trouson. 2001. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3:25-29. https://doi.org/10.1016/S1472-6483(10)61960-8
  6. Wang, X., T. Falcone, M. Attaran, J. M. Goldberg, A. Agarwal and R. K. Sharma. 2002. Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil. Steril. 78:1272-1277. https://doi.org/10.1016/S0015-0282(02)04236-X
  7. Kitagawa, Y., K. Suzuki, A. Yoneda and T. Watanabe. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenol. 62:1186-1197. https://doi.org/10.1016/j.theriogenology.2004.01.011
  8. Guarnaccia, M. M., M. Takami, E. E. Jones, S. L. Preston and H. R. Behrman. 2000. Luteinizing hormone depletes ascorbic acid in preovulatory follicles. Fertil. Steril. 74:959-963. https://doi.org/10.1016/S0015-0282(00)01550-8
  9. Harvey, A. J., K. L. Kind and J. G. Thompson. 2002. REDOX regulation of early embryo development. Reproduction 123:479-486. https://doi.org/10.1530/rep.0.1230479
  10. Bilodeau, J. F., S. Chatterjee, M. A. Sirard and C. Gagnon. 2000. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol. Reprod. Dev. 55:282-288. https://doi.org/10.1002/(SICI)1098-2795(200003)55:3<282::AID-MRD6>3.0.CO;2-7
  11. Shapiro, B. M. 1991. The control of oxidant stress at fertilization. Sci. 252:533-536. https://doi.org/10.1126/science.1850548
  12. Guille, J. J. P. and H. Joenje. 1991. Biological significance of oxgen toxicity: an introduction. In: Membrane Lipid Oxidation (Ed. C. Vigo-Pelfrey). CRC Press Inc, Boca Ranton FL. pp. 1-32.
  13. Yang, H. W., K. J. Hwang, H. C. Kwon, H. S. Kim, K. W. Choi and K. S. Oh. 1998. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum. Reprod. 13:998-1002. https://doi.org/10.1093/humrep/13.4.998
  14. Donnelly, E. T., N. McClure and S. E. Lewis. 1994. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis 14:505-512.
  15. Iwata, H., S. Akamatsu, N. Minami and M. Yamada. 1999. Allopurinol, an inhibitor of xanthine oxidase, improves the development of IVM/IVF bovine embryos (>4 cell) in vitro under certain culture conditions. Theriogenol. 51:613-622. https://doi.org/10.1016/S0093-691X(99)00014-X
  16. Gardner, D. K. and M. Lane. 2002. Development of a viable mammalian embryos in vitro: Evolution of sequential media. In: Principles of cloning (Ed. J. Cibelli, R. P. Lanza, K. H. S. Campbell and M. D. West). Academic Press, USA. pp. 187-208.
  17. Whittingham, D. C. 1980. Parthenogenesis in mammals. In: Oxford Reviews of Reproductive Biology (Ed. C. A. Finn). Clarendon Press, Oxford. pp. 205-231.
  18. Guerin, P., S. E. Mouatassim and Y. Menezo. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7:175-189. https://doi.org/10.1093/humupd/7.2.175
  19. Evans, J. P. 1999. Sperm disintegrins, egg integrins, and other cell adhesion molecules of mammalian gamete plasma membrane interactions. Front. Biosci. 4:114-131. https://doi.org/10.2741/Evans
  20. Eppig, J. J., M. Hosoe, M. J. O'Brien, F. M. Pendola, A. Requena and S. Watanabe. 2000. Conditions that affect acquisition of developmental competence by mouse oocytes in vitro: FSH, insulin, glucose and ascorbic acid. Mol. Cell. Endocrinol. 163:109-116. https://doi.org/10.1016/S0303-7207(99)00247-6
  21. Tilly, J. L. and K. I. Tilly. 1995. Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinol. 136:242-252. https://doi.org/10.1210/en.136.1.242
  22. Kim, H. S., G. S. Lee, S. H. Hyun, D. H. Nam, S. H. Lee, Y. W. Jeong, S. Kim, J. H. Kim, S. K. Kang, B. C. Lee and W. S. Hwang. 2004. Improved in vitro development of porcine embryos with different energy substrates and serum. Theriogenol. 61:1381-1393. https://doi.org/10.1016/j.theriogenology.2003.08.012
  23. Miesel, R., P. J. Drzejczak and M. Kurpisz. 1993. Oxidative stress during the interaction of gametes. Biol. Reprod. 49:918-923. https://doi.org/10.1095/biolreprod49.5.918
  24. Snell, W. J. and J. M. White. 1996. The molecules of mammalian fertilization. Cell 85:629 -637. https://doi.org/10.1016/S0092-8674(00)81230-1
  25. Olson, S. E. and G. E. Seidel, Jr. 2000. Culture of in vitroproduced bovine embryos with vitamin-E improves development in vitro and after transfer to recipients. Biol. Reprod. 62:248-252. https://doi.org/10.1095/biolreprod62.2.248
  26. Orsi, N. M. and H. J. Leese. 2001. Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase, and pyruvate. Mol. Reprod. Dev. 59:44-53. https://doi.org/10.1002/mrd.1006
  27. Jolliff, W. J. and R. S. Prather. 1997. Parthenogenic development of in vitro-matured, in vivo-cultured porcine oocytes beyond blastocyst. Biol. Reprod. 56:544-548. https://doi.org/10.1095/biolreprod56.2.544