Destruction of Acetic Acid Using Various Combinations of Oxidants by an Advanced Oxidation Processes

다양한 산화반응을 조합한 고급산화공정의 아세트산 분해에 관한 연구

  • Kwon, Tae Ouk (Department of Chemical Engineering, Sunchon National University) ;
  • Park, Bo Bae (Department of Chemical Engineering, Sunchon National University) ;
  • Moon, Jang Soo (Korea Institute of Environmental Science and Technology) ;
  • Moon, Il Shik (Department of Chemical Engineering, Sunchon National University)
  • 권태옥 (국립 순천대학교 공과대학 화학공학과) ;
  • 박보배 (국립 순천대학교 공과대학 화학공학과) ;
  • 문장수 (한국환경기술진흥원) ;
  • 문일식 (국립 순천대학교 공과대학 화학공학과)
  • Received : 2006.12.26
  • Accepted : 2007.05.17
  • Published : 2007.08.10

Abstract

The destruction of synthetic acetic acid wastewater was carried out using UV, $O_3$, $H_2O_2$, $Fe^{2+}$ oxidants in various combinations by the advanced oxidation processes. $UV/H_2O_2$, $UV/H_2O_2/Fe^{2+}$, $O_3$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested. $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes shows the most effective destruction efficiency at low pH (3.5) condition of wastewater, but $UV/H_2O_2$ and $O_3$ processes were observed less than 20%. Destruction efficiency was gradually increased with the reaction time in the $O_3/H_2O_2$ and $UV/O_3/H_2O_2$ processes, in case of the $UV/H_2O_2/Fe^{2+}$ and $UV/O_3/H_2O_2/Fe^{2+}$ processes shows rapid increasing of destruction efficiency within 90 min, then slightly decreasing with time. The destruction efficiencies of $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$ and $UV/O_3/H_2O_2/Fe^{2+}$ processes were observed 55, 66, 66 and 64%, respectively.

Keywords

acetic acid;ozone;advanced oxidation process;UV;iron catalyst

Acknowledgement

Supported by : 한국산업기술재단

References

  1. T. J. Park, J. S. Lim, Y. W. Lee, and S. H. Kim, J. Supercritical Fluids, 26, 201 (2003) https://doi.org/10.1016/S0896-8446(02)00161-4
  2. M. S. Lee, J. D. Lee, and S. S. Hong, J. Industrual and Engineering Chemistry, 11, 495 (2005)
  3. D. Y. Ha and S. H. Cho, J. Korean Soc. Environ. Eng., 25, 1123 (2003)
  4. Z. Pengyi, L. Fuyan, Y. Gang, C. Qing, and Z. Wanpeng, J. Photobiology A: Chemistry, 156, 189 (2003) https://doi.org/10.1016/S1010-6030(02)00432-X
  5. H. Kusic, N. Koprivance, and A. L. Bozie, Chemical Engineering J., 123, 127 (2006) https://doi.org/10.1016/j.cej.2006.07.011
  6. J. M. Monteagudo, M. Carmona, and A. Duran, Chemosphere, 60, 1103 (2005) https://doi.org/10.1016/j.chemosphere.2004.12.063
  7. N. Azbar, T. Yonar, and K. Kestioglu, Chemosphere, 55, 35 (2004) https://doi.org/10.1016/j.chemosphere.2003.10.046
  8. S. Esplugas, J. Gimenez, S. Contreras, and E. Pascual, Water Research, 36, 1034 (2002) https://doi.org/10.1016/S0043-1354(01)00301-3
  9. T. Ramesh, T. O. Kwon, and I. S. Moon, Korean J. Chemical Engineering, 22, 938 (2005) https://doi.org/10.1007/BF02705679
  10. J. L. Lim, K. H. Lee, S. H. Chae, S. H. Kim, and H. W. Ahn, J. Korean Soc. Environ. Eng., 26, 1238 (2004)
  11. T. Ramesh, T. O. Kwon, J. C. Jun, S. Balaji, M. Matheswaran, and I. S. Moon, J. Hazardous Materials, 142, 308 (2007) https://doi.org/10.1016/j.jhazmat.2006.08.023
  12. J. H. Shin, Y. D. Jeoung, and I. J. Yeon, Journal of KSWQ, 20, 251 (2004)
  13. C. Zerva, Z. Peschos, S. G. Poulopoulos, and C. J. Philippopoulos, J. Hazardous Materials, B97, 257 (2003)
  14. Y. H. Son, M. K. Jeon, J. Y. Ban, M. S. Kang, and S. J. Choung, J. Industrual and Engineering Chemistry, 11, 938 (2005)
  15. W. S. Chen, C. N. Juan, and K. M. Wei, J. Hazardous Materials, In press (2007)
  16. S. Findik, G. Gunduz, Ultrasonics, 14, 157 (2007)
  17. M. Y. Ghaly, G. Hartel, R. Mayer, and R. Haseneder, Water Management, 21, 41 (2001)
  18. Y. Ku, W. Wang, and Y. S. Shen, J. Hazardous Materials, B72, 25 (2000)
  19. C. A. C. Sequeira, D. M. F. Santos, and P. S. D. Brito, Appl. Surf. Sci., 252, 6093 (2006) https://doi.org/10.1016/j.apsusc.2005.11.028
  20. L. Guzzella, D. Feretti, and S. Monarca, Water Research, 36, 4307 (2002) https://doi.org/10.1016/S0043-1354(02)00145-8
  21. R. Andreozzi, V. Gaprio, A. Insola, R. Marotta, and R. Sanchirico, Water Research, 34, 620 (2000) https://doi.org/10.1016/S0043-1354(99)00169-4
  22. K. S. Jun and Y. S. Won, Journal of KSWM, 22, 301 (2005)
  23. J. A. Giroto, R. Guardani, A. C. S. C. Teixeira, and C. A. O. Nascimento, Chemical Engineering and Processing, 45, 523 (2006) https://doi.org/10.1016/j.cep.2005.12.001
  24. R. Toor and M. Mohseni, Chemosphere, in press (2006)
  25. G. Yardin and S. Chiron, Chemosphere, 62, 1395 (2006) https://doi.org/10.1016/j.chemosphere.2005.05.019
  26. X. Feng, S. Ding, J. Tu, F. Wu, and N. Deng, Science of The Total Environment, 345, 229 (2005) https://doi.org/10.1016/j.scitotenv.2004.11.008
  27. S. Findik, G. Gunduz, and E. Gunduz, Ultrasonics, 13, 203 (2006)
  28. M. D. Bermejo and M. J. Cocero, J. Hazardous Materials, B137, 965 (2006)
  29. S. Elmaleh, M. B. Defrance, and C. Ghommidh, Process Biochemistry, 35, 441 (1999)