Preparation and Characterization of the Histidine-graft-Low Molecular Weight Water-Soluble Chitosan as a Gene Carrier

유전자 전달체로서 히스티딘이 결합된 저분자량 수용성 키토산의 제조와 특성

  • Park, Jun-Kyu (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Kim, Dong-gon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Choi, Changyong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 박준규 (순천대학교 공과대학 신소재응용공학부 고분자공학전공) ;
  • 김동곤 (순천대학교 공과대학 신소재응용공학부 고분자공학전공) ;
  • 최창용 (순천대학교 공과대학 신소재응용공학부 고분자공학전공) ;
  • 장미경 (순천대학교 공과대학 신소재응용공학부 고분자공학전공) ;
  • 나재운 (순천대학교 공과대학 신소재응용공학부 고분자공학전공)
  • Received : 2007.08.22
  • Accepted : 2007.10.11
  • Published : 2007.12.10

Abstract

To improve transfection efficiency, we prepared histidine-low molecular weight water-soluble chitosan (LMWSC) having the potential to form complex with DNA as a cationic polymer. Histidine-LMWSC was synthesized by the esterification reaction and removing phthaloyl group. The histidine-LMWSC was characterized using FT-IR, $^1H$ NMR spectra. Histidine-LMWSC was complexed with plasmid DNA (pDNA) in various polymer/DNA (N/P) weight ratios, and the complex was identified using gel retardation assay. The particle sizes of the hisitidine-LMWSC/DNA complexes were measured on a DLS instrument by fixing the histidine-LMWSC/DNA weight ratio of 10/1. Owing to the utilization of a large excess amount of cationic LMWSC against anionic DNA, the particle size of histidine-LMWSC/DNA complexes was in the range of 100~200 nm. Therefore, histidine-LMWSC will be useful in the development of gene carriers.

References

  1. S. Hirano, Polym. Int., 48, 732 (1999)
  2. R. Fernandez-Urrusuno, P. Calvo, C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso, Pharm. Res., 16, 1576 (1999)
  3. A. F. Kotez, B. J. de Leeuw, H. L. Lueben, A. G. deBoer, J. C. Verhoef, and H. E. Junginger, Int. J. Pharm., 159, 243 (1997)
  4. M. K. Jang, Y. I. Jeong, C. S. Cho, S. H. Yang, Y. E. Kang, and J. W. Nah, Bull. Korean Chem. Soc., 23, 914 (2002) https://doi.org/10.5012/bkcs.2002.23.6.914
  5. S. Hirano, H. Inui, H. Koski, Y. Uno, and T. Toda, Chitin and chitosan: Ecologically bioactive polymer, in biotechnology and bioactive polymers, Gebrlrtin, C. and Carraher, C., eds. New York: Plenum Press, 43 (1994)
  6. S. Son, S. Y. Chae, C. Choi, M. Y. Kim, V. G. Ngugen, M. K. Jang, and J. W. Nah, J. K. Kweon, Macromol. Res., 12, 573 (2004) https://doi.org/10.1007/BF03218446
  7. C. H. Kim, H. S. Park, Y. J. Gin, Y. Son, S. H. Lim, Y. J. Choi, K. S. Park, and C. W. Park, Macromol. Res., 12, 367 (2004) https://doi.org/10.1007/BF03218413
  8. K. Y. Lee, Macromol. Res., 13, 542 (2005) https://doi.org/10.1007/BF03218494
  9. M. Lee, J. W. Nah, Y. Kwon, J. J. Koh, K. S. Ko, and S. W. Kim, Pharm Res., 18, 427 (2001) https://doi.org/10.1023/A:1011037807261
  10. A. Akinc, M. Thomas, A. M. Klibanov, and R. Langer, J. Gene Med. 7, 657 (2005) https://doi.org/10.1002/jgm.696
  11. T. A. Jones, M. Gumbleton, and R. Duncan, Adv. Drug Deliv. Rev., 55 (2003) https://doi.org/10.1016/S0169-409X(02)00169-2
  12. A. Kichler, C. Leborgne, E. Coeytaux, and O. Danos, J. Gene Med. 3, 135 (2001) https://doi.org/10.1002/jgm.173
  13. A. Patchornic, A. Berger, and E. Katchalski, J. Am. Chem. Soc., 79, 5227 (1957) https://doi.org/10.1021/ja01576a043
  14. O. Boussif, F. Lezoualc'h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr, Proc. Batl. Acad. Sci. U. S. A. 92,823 (1995)
  15. M. Neu, D. Fischer, and T. Kissel, J Gene Med., 7, 992 (2005) https://doi.org/10.1002/jgm.773
  16. J. W. Nah, L. Yu, S. O. Han, C. H. Ahn, and S. W. Kim, J Control Rel., 78, 273 (2002) https://doi.org/10.1016/S0168-3659(01)00499-0