DOI QR코드

DOI QR Code

Immunity of the Buffalo Mammary Gland during Different Physiological Stages

  • Dang, A.K. (National Dairy Research Institute) ;
  • Kapila, Suman (National Dairy Research Institute) ;
  • Tomar, Parveen (National Dairy Research Institute) ;
  • Singh, Charan (National Dairy Research Institute)
  • Received : 2006.12.05
  • Accepted : 2007.03.17
  • Published : 2007.08.01

Abstract

To study the immunity of the buffalo mammary gland during involution and around parturition and compare it with the mastitic mammary gland, milk samples were collected from 9 Murrah buffaloes during the above critical periods. SCC of buffalo milk increased significantly (p<0.01) by day 21 of involution and one week prepartum. SCC was significantly higher around parturition but became normal at 14 days postpartum. Phagocytic activity (PA) and phagocytic index (PI) of the buffalo milk neutrophils decreased as the duration of the dry period increased. Elevated levels of immunoglobulins at calving improved the PA and PI, but the lowest PA of 18.8% and PI of 1.75 were recorded at 7 days postpartum. Buffaloes suffering from clinical mastitis had PA of 12.3% and PI of 1.46 that increased significantly (p<0.01) on the third day of treatment. Distance of teat from ground level was found to be minimum at one week before parturition. The investigation showed that in vitro phagocytic activity of buffalo neutrophils was weakest at one week postpartum.

Keywords

Buffalo;Milk;SCC;Phagocytic Activity;Index;Immunoglobulins;Teat Distance

References

  1. Hay, F. C. and O. M. R. Westwood. 2002. Practical Immunology, 4th edition, pp. 203-206.
  2. Hoeben, D., E. Monfardini, G. Opsama, H. Dosogne, A. DeKuif, J. F. Beckers and C. Burvenich. 2000. Chemiluminiscence of bovine polymorphonuclear leukocytes during the periparturient period and relation with metabolic parameters and bovine pregnancy associated glycoproteins. J. Dairy Res. 67:249-259. https://doi.org/10.1017/S0022029900004052
  3. Gonzalo, C., J. R. Martínez, J. A. Carriedo and F. San Primitivo. 2003. Fossomatic Cell-Counting on Ewe Milk: Comparison with Direct Microscopy and Study of Variation Factors. J. Dairy Sci. 86:138-145. https://doi.org/10.3168/jds.S0022-0302(03)73593-0
  4. Guidry, A. J., M. J. Paape and R. E. Pearson. 1976. Effects of parturition and lactation on blood and milk cell concentrations, corticosteroids, and neutrophil phagocytosis in the cow. Am. J. Vet. Res. 37(10):1195-1200.
  5. Haenlein, G. F. W., L. H. Schultz and J. P. Zikakis 1973. Composition of proteins in milk with varying leucocytes counts. J. Dairy Sci. 56:1017-1024. https://doi.org/10.3168/jds.S0022-0302(73)85299-3
  6. DeChatelet, L. R., G. D. Long, P. S. Shirley, D. A. Bass, M. J. Thomas, F. W. Henderson and M. S. Cohen. 1982. Mechanism of the luminol dependent chemiluminiscence of human neutrophils. J. Immun. 129:1589-1593.
  7. Dosogne, H., F. Vangroenweghe, J. Mehrzad, A. M. Massart-leen and C. Burvenich. 2003. Differential Leucocyte Count method for bovine low Somatic Cell Count milk. J. Dairy Sci. 86:828-834. https://doi.org/10.3168/jds.S0022-0302(03)73665-0
  8. Erskine, R. J. 2001. Enhancing immunity during the dry period:pitfalls and oppurtunities. Natl. Mast.Coun.Ann. Meet. Proc. pp. 95-106.
  9. Burton, J. L., M. E. Kehrli, Jr., S. Kapil and R. L. Horst. 1995. Regulation of L-selectin and CD18 on bovine neutrophils by glucocorticoids: effects of cortisol and dexamethasone. J. Leuk. Bio. 57:317. https://doi.org/10.1002/jlb.57.2.317
  10. Burvenich, C., V. Vanmerris, J. Mehrzad, A. Diezfraile and L. Duchateau. 2003. Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res. 34:521-564. https://doi.org/10.1051/vetres:2003023
  11. Coulon, J. B., Pradel, P.; Cochard, T. and Poutrel. 1988. Effect of extreme walking conditions for Dairy cows on milk yield, chemical composition and somatic cell count. J. Dairy Sci. 81:994. https://doi.org/10.3168/jds.S0022-0302(98)75660-7
  12. Amarante-Paffaro, A., G. S. Queiroz, S. T. Correa, B. Spira and E. Bevilacqua. 2004. Phagocytosis as a potential mechanism for microbial defense of mouse placental trophoblast cells. Reprod. 128:207-218. https://doi.org/10.1530/rep.1.00214
  13. Barkema, H. W., H. A. Deluyker, Y. H. Schukken and T. J. G. M. Lam. 1999. Quarter-milk somatic cell count at calving and at the first six milkings after calving, Prev. Vet. Med. 38:1-9. https://doi.org/10.1016/S0167-5877(98)00142-1
  14. McEwan, A. D., E. W. Fisher, I. E. Selman and W. J. Penhale. 1970. A turbidity test for the estimation of immunoglobulin levels in neonatal calf serum. Clinica Chimica Acta 27:155-163. https://doi.org/10.1016/0009-8981(70)90390-6
  15. Mehrzad, J., H. Dosogne, E. Meyer and C. Burvenich. 2001. Local and systemic effects of endotoxin mastitis on the chemiluminescence of milk and blood neutrophils in dairy cows. Vet. Res. 32:131-144. https://doi.org/10.1051/vetres:2001100
  16. Monrades, H. G., R. I. Cue and J. F. Hayes. 1990. Correlations between udder confirmation traits and somatic cell counts in Canadian Holstein cows. J. Dairy Sci. 73:1337-1342. https://doi.org/10.3168/jds.S0022-0302(90)78800-5
  17. Moroni, P., C. S. Rossi, G. Pisoni, V. Bronzo, B. Castiglioni and P. J. Boettcher. 2006. Relationships Between Somatic Cell Count and Intramammary Infection in Buffaloes. J. Dairy Sci. 89(3): 998-1003. https://doi.org/10.3168/jds.S0022-0302(06)72165-8
  18. Hogberg, S. M. and O. Lind. 2003. Buffalo Milk Production- Chapter 6: Milking the buffalo, www.milkproduction. com.
  19. Jain, N. C. 1993. In: Essentials of Veterinary Hematology, Lea and Febiger, Philadelphia, PA. 417.
  20. Jain, N. C. and J. Lasmanis. 1978. Phagocytosis of serum-resistant and serum-sensitive coliform bacteria (Klebsiella) by bovine neutrophils from blood and mastitic milk. Am. J. Vet. Res. 39:425-427.
  21. Schultz, L. H. 1977. Somatic cell counting of milk in production testing programs as a mastitis control technique. J. Am. Vet. Med. Ass. 170:1244-1246.
  22. Smith, K. L. and J. S. Hogan. 2001. The physiology of mammary glands during the dry period and the relationship to infection. www.veterinaria.uchile.cl/publication/congresoxi/pr/bovi/15.doc)
  23. Sugisawa, H., T. Itou and T. Sakai. 2001. Promoting effect of colostrum on the phagocytic activity of bovine Poly morpho nuclear leucocytes in vitro. Biology of the neonate. 79(20): 140-144. https://doi.org/10.1159/000047080
  24. Tripaldi, C., S. Terramoccia, S. Bartocci, M. Angelucci and V. Danese. 2003. The effects of the somatic cell count on yield, composition and coagulating properties of Mediterranean buffalo milk. Asian Aust. J. Anim. Sci. 16:738-742. https://doi.org/10.5713/ajas.2003.738
  25. Uppal, S. K., K. B. Singh, K. S. Roy, D. S. Nuriyal and B. K. Bansal. 1994. Natural defence mechanism against mastitis: A comparative histomorphology of buffalo teat canal. Buffalo J. 2:125-131.
  26. Rainard, P. and C. Riollet. 2003. Mobilization of neutrophils and defense of bovine mammary gland. Reprod. Nutr. Dev. 43:439-457. https://doi.org/10.1051/rnd:2003031
  27. Rivas, A. L., R. Tadevosyan, F. W. Quimby, T. Coksaygan and D. H. Lein. 2002. Identification of subpopulations of bovine mammary-gland phagocytes and evaluation of sensitivity and specificity of morphologic and functional indicators of bovine mastitis. Canadian J. Vet. Res. 66(3):165-172.
  28. Woessner, J. J. F. 1992. Cellular proteinases in inflammation. In: Biochemistry of inflammation (Ed. J. T. Whicher and S. W. Evans). Kluwer Academic Publishers, London, pp. 57-89.
  29. Lund, T., F. Miglior, J. C. M. Dekkers and E. B. Burnside. 1994. Genetic relationship between clinical mastitis, somatic cell counts and udder confirmation in Danish Holstein. Livest. Prod. Sci. 39:243-251. https://doi.org/10.1016/0301-6226(94)90203-8
  30. MacDonald, E. A., L. Xia, H. Monardes and J. D. Turner. 1994. Neutrophil function in vitro: Diapedesis and phagocytosis. J. Dairy Sci. 77:628-638. https://doi.org/10.3168/jds.S0022-0302(94)76993-9
  31. Paape, M. J., D. D. Bannerman, X. Zhao and J. W. Lee. 2003. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 34:597-627. https://doi.org/10.1051/vetres:2003024
  32. Pyorala, S. 2003. Indicators of inflammation in the diagnosis of mastitis. Vet. Res. 34:565-578. https://doi.org/10.1051/vetres:2003026
  33. Jensen, D. L. and R. J. Eberhart. 1981. Total and differential cell counts in secretions of the nonlactating bovine mammary gland. Am. J. Vet. Res. 42:743-747.
  34. Lohuis, J. A., W. Van Leeuwen, J. H. M. Verheijden, A. Brand. 1988. Effect of dexamethasone on experimental Escherichia coli mastitis in the cow. J. Dairy Sci. 71:2782. https://doi.org/10.3168/jds.S0022-0302(88)79872-0
  35. Hill, A. W., A. L. Shears and K. G. Hibbitt. 1979. The pathogenesis of experimental Escherichia coli mastitis in newly calved dairy cows. Res. Vet. Sci. 26:97.
  36. Meglia, G. E., A. Johannisson, S. Agenas, K. Holtenius and K. P. Waller. 2001. Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. http://www.medscape.com/medline/publication. Vet J. 2005. 169(3):376-84. https://doi.org/10.1016/j.tvjl.2004.02.003
  37. Schuit, K. E. 1979. Phagocytosis and Intracellular Killing of Pathogenic Yeasts by Human Monocytes and Neutrophils. Infect. Immun. 24(3):932-938.

Cited by

  1. Changes in colostrum of Murrah buffaloes after calving vol.41, pp.7, 2009, https://doi.org/10.1007/s11250-008-9302-7
  2. In vitro phagocytic activity of milk neutrophils during lactation cycle in Murrah buffaloes of different parity vol.94, pp.6, 2010, https://doi.org/10.1111/j.1439-0396.2010.01013.x
  3. ) mammary epithelial cells isolated from milk vol.13, pp.21, 2013, https://doi.org/10.1002/pmic.201300031
  4. Diurnal rhythm in the counts and types of milk somatic cells, neutrophil phagocytosis and plasma cortisol levels in Karan Fries cows during different seasons and parity pp.1744-4179, 2017, https://doi.org/10.1080/09291016.2017.1350442
  5. Diurnal variation of milk somatic and differential leukocyte counts of Murrah buffaloes as influenced by different milk fractions, seasons and parities vol.49, pp.1, 2018, https://doi.org/10.1080/09291016.2017.1345472
  6. Seasonal variation in physiological responses, stress and metabolic-related hormones, and oxidative status of Murrah buffaloes pp.1744-4179, 2018, https://doi.org/10.1080/09291016.2018.1424775