DOI QR코드

DOI QR Code

Overexpressed Drosophila DNA Methyltransferase 2 Isoform C Interacts with Hsp70 in Vivo

  • Roder, Karim (Institute of Molecular Biology, Academia Sinica)
  • Published : 2007.07.31

Abstract

Shen and colleagues (Lin et al., 2004) have recently shown that overexpression of the Drosophila DNA methyltransferase 2 isoform C, dDnmt2c, extended life span of fruit flies, probably due to increased expression of small heat shock proteins such as Hsp22 or Hsp26. Here, I demonstrate with immunoprecipitations that overexpressed dDnmt2c interacts with endogenous Hsp70 protein in vivo in S2 cells. However, its C-terminal half, dDnmt2c(178-345) forms approximately 10-fold more Hsp70-containing protein complexe than wild-type dDnmt2c. Overexpressed dDnmt2c(178-345) but not the full length dDnmt2c is able to increase endogenous mRNA levels of the small heat shock proteins, Hsp26 and Hsp22. I provide evidence that dDnmt2c(178-345) increases Hsp26 promoter activity via two heat shock elements, HSE6 and HSE7. Simultaneously overexpressed Hsp40 or a dominant negative form of heat shock factor abrogates the dDnmt2c(178-345)-dependent increase in Hsp26 transcription. The data support a model in which the activation of heat shock factor normally found as an inactive monomer bound to chaperones is linked to the overexpressed C-terminus of dDnmt2c. Despite the differences observed in flies and S2 cells, these findings provide a possible explanation for the extended lifespan in dDnmt2c-overexpressing flies with increased levels of small heat shock proteins.

Keywords

DNA methyltransferase 2;Heat shock;Heat shock factor;Heat shock protein;Promoter

References

  1. Alway, S. E., Lowe, D. A. and Chen, K. D. (2001) The effects of age and hindlimb suspension on the levels of expression of the myogenic regulatory factors MyoD and myogenin in rat fast and slow skeletal muscles. Exp. Physiol. 86, 509-517. https://doi.org/10.1113/eph8602235
  2. Fan, C. Y., Lee, S. and Cyr, D. M. (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8, 309-316. https://doi.org/10.1379/1466-1268(2003)008<0309:MFROHF>2.0.CO;2
  3. Fisher, O., Siman-Tov, R. and Ankri, S. (2006) Pleiotropic phenotype in Entamoeba histolytica overexpressing DNA methyltransferase (Ehmeth). Mol. Biochem. Parasitol. 147, 48-54. https://doi.org/10.1016/j.molbiopara.2006.01.007
  4. Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L., Zhang, X., Golic, K. G., Jacobsen, S. E. and Bestor, T. H. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311, 395-398. https://doi.org/10.1126/science.1120976
  5. Hermann, A., Schmitt, S. and Jeltsch, A. (2003) The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J. Biol. Chem. 278, 31717-31721. https://doi.org/10.1074/jbc.M305448200
  6. Hung, M. S., Karthikeyan, N., Huang, B., Koo, H. C., Kiger, J. and Shen, C. J. (1999) Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases. Proc. Natl. Acad. Sci. USA 96, 11940-11945. https://doi.org/10.1073/pnas.96.21.11940
  7. Kamano, H. and Klempnauer, K. H. (1997) B-Myb and cyclin D1 mediate heat shock element dependent activation of the human HSP70 promoter. Oncogene 14, 1223-1229. https://doi.org/10.1038/sj.onc.1200945
  8. Kanei-Ishii, C., Tanikawa, J., Nakai, A., Morimoto, R. I. and Ishii, S. (1997) Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science 277, 246-248. https://doi.org/10.1126/science.277.5323.246
  9. Kunert, N., Marhold, J., Stanke, J., Stach, D. and Lyko, F. (2003) A Dnmt2-like protein mediates DNA methylation in Drosophila. Development 130, 5083-5090. https://doi.org/10.1242/dev.00716
  10. Leigh Brown, A. J. and Ish-Horowicz, D. (1981) Evolution of the 87A and 87C heat-shock loci in Drosophila. Nature 290, 677-682. https://doi.org/10.1038/290677a0
  11. Lin, M.-J., Tang, L.-Y., Reddy, M. N. and Shen, C.-K.J. (2004) DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J. Biol. Chem. 280, 861-864. https://doi.org/10.1074/jbc.C400477200
  12. Marchler, G. and Wu, C. (2001). Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. EMBO J. 20, 499-509. https://doi.org/10.1093/emboj/20.3.499
  13. Morimoto, R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 15, 3788-3796.
  14. Pirkkala, L., Nykanen, P. and Sistonen, L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118-1131. https://doi.org/10.1096/fj00-0294rev
  15. Ponger, L. and Li, W. H. (2005) Evolutionary diversification of DNA methyltransferases in eukaryotic genomes. Mol. Biol. Evol. 22, 1119-1128. https://doi.org/10.1093/molbev/msi098
  16. Reddy, M. N., Tang, L.-Y., Lee, T.-L. and Shen C.-K. J. (2003) A candidate gene for Drosophila genome methylation. Oncogene 22, 6301-6303. https://doi.org/10.1038/sj.onc.1206650
  17. Roder, K., Hung, M.-S., Lee, T.-L., Lin, T.-Y., Xiao, H., Isobe, K. I., Juang, J. L. and Shen, C.-K. J. (2000). Transcriptional repression by Drosophila methyl-CpG-binding proteins. Mol. Cell. Biol. 20, 7401-7409. https://doi.org/10.1128/MCB.20.19.7401-7409.2000
  18. Sandaltzopoulos, R., Mitchelmore, C., Bonte, E., Wall, G. and Becker, P. B. (1995) Dual regulation of the Drosophila hsp26 promoter in vitro. Nucleic Acids Res. 23, 2479-2487. https://doi.org/10.1093/nar/23.13.2479
  19. Santoro, M. G. (2000) Heat shock factors and the control of the stress response. Biochem. Pharmacol. 59, 55-63. https://doi.org/10.1016/S0006-2952(99)00299-3
  20. Tang, L.-Y., Reddy, M. N., Rasheva, V., Lee, T.-L., Lin, M.-J., Hung, M.-S. and Shen C.-K. J. (2003). The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases. J. Biol. Chem. 278, 33613-33616. https://doi.org/10.1074/jbc.C300255200
  21. Wang, H. D., Kazemi-Esfarjani, P. and Benzer, S. (2004). Multiple-stress analysis for isolation of Drosophila longevity genes. Proc. Natl. Acad. Sci. USA 101, 12610-12615. https://doi.org/10.1073/pnas.0404648101
  22. Wang, Y., Theriault, J. R., He, H., Gong, J. and Calderwood, S. K. (2004). Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J. Biol. Chem. 279, 32651-32659. https://doi.org/10.1074/jbc.M401475200