Preparation of Polyacrylonitrile-based Carbon Nanofibers by Electrospinning and Their Capacitance Characteristics

전기방사에 의한 폴리아크릴로니트릴계 탄소나노섬유 제조와 커패시턴스 특성

  • Park, Soo-Jin (Department of Chemistry, Inha Univ.) ;
  • Im, Se-Hyuk (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Rhee, John M. (Department of Advanced Organic Materials Engineering, Chonbuk National Univ.) ;
  • Park, Seong-Yong (Kyungwon Enterprise Co.) ;
  • Kim, Hee-Jung (Kyungwon Enterprise Co.)
  • 박수진 (인하대학교 화학과) ;
  • 임세혁 (한국화학연구원 화학소재연구단) ;
  • 이종문 (전북대학교 유기신물질공학과) ;
  • 박성용 (경원엔터프라이즈(주)) ;
  • 김희정 (경원엔터프라이즈(주))
  • Received : 2006.03.28
  • Accepted : 2007.03.27
  • Published : 2007.06.10

Abstract

In this work, polyacrylonitrile (PAN) fiber was prepared by electrospinning methods from dimethyl formamide solutions with various conditions, such as 8~20 kV applied voltage, 5~15 wt% PAN concentration, and 15 cm tip-to-collector distance (TCD). The nanofibers were stabilized by oxidation at $250^{\circ}C$ for 1 h, and then subsequently carbonized at $800{\sim}1000^{\circ}C$ for 1 h. The structured characteristics of the nanofibers before and after carbonization were studied by Fourier transform infrared spectroscopy. The resulting diameter distribution and morphologies of the nanofiber were evaluated by scanning electron microscope analysis. The electrochemical behaviors of the nanofiber were observed by cyclic voltammetry tests. From the results, the diameter of electrospinning nanofibers was predominantly influenced by the concentration of polymer solution and the applied voltage. The average diameter of the fibers was decreased with increasing the polymer concentration up to 10wt%. It was also found that the nanofibers with uniform diameter distribution and fine diameter could be achieved at 15kV input voltage and 15 cm TCD.

Keywords

polyacrylonitrile;carbon nanofibers;electrospinning;carbonization

References

  1. P. J. Barham and A. Keller, J. Mat. Sci., 20, 2281 (1985) https://doi.org/10.1007/BF00556059
  2. D. H. Reneker, A. L. Yarine, H. Fong, and S. Koombhongse, J. Appl. Phys., 909, 876 (2000)
  3. Y. M. Shin, M. M. Hohman, and G. C. Rutledge, Appl. Phys. Lett., 78, 149 (2001)
  4. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999)
  5. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999)
  6. J. J. Lee and Y. C. Kim, J. Korean Ind. Eng. Chem., 17, 532 (2006)
  7. S. H. Park, C. Kim, J. I. Jo, W. J. Lee, and K. S. Yang, Appl. Chem., 8, 167 (2004)
  8. S. Kim, M. H. Cho, and S. J. Park, J. Korean Ind. Eng. Chem., 17, 16 (2006)
  9. J. Deitzel, N. C. Beak Tan, J. D. Kleinmeyer, J. Rehrmann, D. Tevault, D. H. Reneker, I. Sendijarevic, and A. McHugh, Army Research Laboratiry Report ARL-TR-1999 (1999)
  10. S. B. Warner, A. Buer, S. C. Ugbolue, G. C. Rutledge, and M. Y. Shin, Project M98-D01, National center annual Reports, P. 83 (1998)
  11. B. E. Conway, Electrochemical Supercapacitors, Kluwer Academic and Plenum Publishers, New York (1999)
  12. C. J. Buchko, K. M. Kozloff, and D. C. Martin, Biomaterials, 22, 1289 (2001) https://doi.org/10.1016/S0142-9612(00)00281-7
  13. T. Y. Kim, I. H. Baek, Y. D. Jeoung, and S. C. Park, J. Ind. Eng. Chem., 9, 254 (2003)
  14. A. Formhals, US Patent 1, 975, 504 (1934)
  15. G. I. Taylor, Proc. Royal Soc. Lond.(A), 280, 383 (1964)
  16. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, polymer, 40, 7397 (1999)
  17. C. Kim and K. S. Yang, Carbon Sci., 3, 210 (2002)
  18. J. R. Dees and J. E. Spruiell, J. Appl. Polym. Sci., 18, 1053 (1974) https://doi.org/10.1002/app.1974.070180408
  19. Y. J. Cho, D. R. Chang, G. S. Heo, and C. N. Choi, Appl. Chem., 9, 5 (2005)
  20. C. Kim, Y. O. Choi, W. J. Lee, and K. S. Yang, Electrochem. Acta., 50, 878 (2004)
  21. J. Doshi and D. H. Reneker, J. Electrost., 35, 151 (1995)
  22. S. J. Park and B. J. Kim, Carbon Sci., 6, 257 (2005)
  23. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996)
  24. J. M. Deitzel, W. Kosik, S. H. McKnight, N. C. Beak Tan, J. M. Desimone, and S. Crette, Polymer, 43, 1025 (2002) https://doi.org/10.1016/S0032-3861(01)00594-8
  25. D. H. Reneker, W. Kataphinan, A. Theron, E. Zussman, and A. L. Yarin, Polymer, 43, 6785 (2002) https://doi.org/10.1016/S0032-3861(02)00595-5
  26. M. G. Hajra, K. Mehta, and G. G. Chase, Sep. Purif. Technol., 30, 79 (2003)
  27. D. Lozano-Castell, D. Cazorla-Amors, A. Linares-Solano, S. Shiraishi, H. Kurihara, and A. Oya, Carbon, 41, 1765 (2003)
  28. G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, and E. Frackowiak, Electrochem. Acta., 50, 1197 (2005)
  29. C. J. Bunhko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999)
  30. K. Ohgo, C. Zhao, M. Kobayshi, and T. Asakura, Polymer, 44, 841 (2003) https://doi.org/10.1016/S0032-3861(02)00819-4
  31. A. Nishino, J. Power Sources, 60, 137 (1996)
  32. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, and G. E. Wnek, J. Control. Release, 81, 57 (2002) https://doi.org/10.1016/S0168-3659(02)00041-X
  33. J. S. Lee, J. K. Suh, J. S. Hong, C. H. Lee, and J. M. Lee, J. Ind. Eng. Chem., 10, 623 (2004)
  34. M. Endo, Chemtech, 18, 568 (1988)
  35. J. S. Kim and D. H. Reneker, Polym. Eng. & Sci., 39, 849 (1999)
  36. E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001) https://doi.org/10.1016/S0008-6223(00)00183-4
  37. P. Gibson, H. Schreuder-Gibson, and D. Rivin, Colloids Surf. A:Physicochem. Eng. Asp., 187, 469 (2001)
  38. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, Polymer, 42, 8163 (2001) https://doi.org/10.1016/S0032-3861(01)00336-6
  39. S. O. Kim, W. J. Shin, H. S. Cho, B. C. Kim, and I. J. Chung, Polymer, 40, 6443 (1999)