Expression of a Functional Type-I Chalcone Isomerase Gene Is Localized to the Infected Cells of Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang (School of Biological Sciences, Seoul National University) ;
  • Bae, Ju Hee (School of Biological Sciences, Seoul National University) ;
  • Lim, Jung Dae (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Yu, Chang Yeon (Division of Applied Plants Science, Kangwon National University) ;
  • An, Chung Sun (School of Biological Sciences, Seoul National University)
  • Received : 2007.03.19
  • Accepted : 2007.04.09
  • Published : 2007.06.30

Abstract

A putative type-I chalcone isomerase (CHI) cDNA clone EuNOD-CHI was previously isolated from the root nodule of Elaeagnus umbellata [Kim et al. (2003)]. To see if it encodes a functional CHI, we ectopically overexpressed it in the Arabidopsis (Arabidopsis thaliana) transparent testa 5 (tt5) mutant, which is defective in naringenin production and has yellow seeds due to proanthocyanidin deficiency. Ectopic overexpression of EuNOD-CHI resulted in recovery of normal seed coat color. Naringenin produced by CHI from naringenin chalcone was detected in the transgenic lines like in the wild-type, whereas it was absent from the tt5 mutant. We conclude that EuNOD-CHI encodes a functional type-I CHI. In situ hybridization revealed that EuNOD-CHI expression is localized to the infected cells of the fixation zone in root nodules.

Keywords

Arabidopsis tt5 Mutant;Chalcone Isomerase;Molecular Complementation;Elaeagnus umbellata;Flavonoids Analysis;Frankia;In Situ Hybridization;Root Nodule

Acknowledgement

Supported by : Korean Ministry of Science and Technology

References

  1. Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., et al. (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126, 524–535
  2. Goormachtig, S., Lievens, S., Herman, S., Van Montagu, M., and Holsters, M. (1999) Chalcone reductase-homologous transcripts accumulate during development of stem-borne nodules on the tropical legume Sesbania rostrata. Planta 209, 45-52 https://doi.org/10.1007/s004250050605
  3. Hirsch, A. M. (1992) Developmental biology of legume nodulation. New Phytol. 122, 211-237 https://doi.org/10.1111/j.1469-8137.1992.tb04227.x
  4. Laplaze, L., Gherbi, H., Frutz, T., Pawlowski, K., Franche, C., et al. (1999) Flavan-containing cells delimit Frankia-infected compartments in Casuarinas glauca nodules. Plant Physiol. 121, 113-122 https://doi.org/10.1104/pp.121.1.113
  5. Lepiniec, L., Debeaujon, I., Routaboul, J. M., Baudry, A., Pourcel, L., et al. (2006) Genetics and biochemistry of seed flavonoids. Ann. Rev. Plant Biol. 57, 405-430 https://doi.org/10.1146/annurev.arplant.57.032905.105252
  6. McKhann, H. I., Paiva, N. L., Dixon, R. A., and Hirsch, A. M. (1997) Chalcone synthase transcripts are detected in alfalfa root hairs following inoculation with wild-type Rhizobium meliloti. Mol. Plant-Microbe Interact. 10, 50-58 https://doi.org/10.1094/MPMI.1997.10.1.50
  7. Topfer, R., Matzeit, V., Gronenborn, B., Schell, J., and Steinbiss, H. H. (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 15, 5890 https://doi.org/10.1093/nar/15.14.5890
  8. Alltech's Chromatography Sourcebook Bulletin #460A (2006), Alltech Associates, Inc., Deerfield
  9. Hocher, V., Auguy, F., Argout, X., Laplaze, L., Franche, C., et al. (2006) Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root. New Phytol. 169, 681-688 https://doi.org/10.1111/j.1469-8137.2006.01644.x
  10. Mulder, L., Hogg, B., Bersoult, A., and Cullimore, J. V. (2005) Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis. Physiol. Plant. 123, 207-218 https://doi.org/10.1111/j.1399-3054.2005.00448.x
  11. McKhann, H. I. and Hirsch, A. M. (1993) In situ localization of specific mRNAs in plant tissues; in Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E. (eds.), pp. 179-205, CRC press, Boca Raton
  12. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  13. Benoit, L. F. and Berry, A. M. (1997) Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actionmycetes). Physiol. Plant. 99, 588-593 https://doi.org/10.1111/j.1399-3054.1997.tb05361.x
  14. Chung, I. M., Kim, J. J., Lim, J. D., Yu, C. Y., Kim, S. H., et al. (2006) Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ. Exp. Bot. 56, 44-53 https://doi.org/10.1016/j.envexpbot.2005.01.001
  15. Jacobs, M. and Rubery, P. H. (1988) Naturally occurring auxin transport regulators. Science 241, 346-349 https://doi.org/10.1126/science.241.4863.346
  16. Shimada, N., Aoki, T., Sato, S., Nakamura, Y., Tabata, S., et al. (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol. 131, 941-951 https://doi.org/10.1104/pp.004820
  17. Jez, J. M., Bowman, M. E., Dixon, R. A., and Noel, J. P. (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat .Struct. Biol. 7, 786-791 https://doi.org/10.1038/79025
  18. Kim, H. B., Oh, C. J., Lee, H., and An, C. S. (2003) A type-I chalcone isomerase mRNA is highly expressed in the root nodules of Elaeagnus umbellata. J. Plant Biol. 46, 263-270 https://doi.org/10.1007/BF03030373
  19. Kim, H. B. and An, C. S. (2002) Differential expression patterns of an acidic chitinase and a basic chitinase in the root nodule of Elaeagnus umbellata. Mol. Plant-Microbe Interact. 15, 209-215 https://doi.org/10.1094/MPMI.2002.15.3.209
  20. Kim, H. K., Jang, Y. H., Baek, I. S., Lee, J. H., Park, M. J., et al. (2005) Polymorphism and expression of isoflavone synthase genes from soybean cultivars. Mol. Cells 19, 67-73
  21. Yang, W. C., Canter Cremers, H. C. J., Hogendijk, P., Katinakis, P., Wijffelman, C. A., et al. (1992) In-situ localization of chalcone synthase mRNA in pea root nodule development. Plant J. 2, 143-151 https://doi.org/10.1111/j.1365-313X.1992.00143.x
  22. Wasson, A. P., Pellerone, F. I., and Mathesius, U. (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18, 1617-1629 https://doi.org/10.1105/tpc.105.038232
  23. Kimura, Y., Aoki, T., and Ayabe, S. (2001) Chalcone isomerase isozymes with different substrate specificities toward 6′-hydroxy and 6′-deoxychalcones in cultured cells of Glycyrrhiza echinata, a leguminous plant producing 5′-deoxyflavo-noids. Plant Cell Physiol. 42, 1169-1173 https://doi.org/10.1093/pcp/pce130
  24. Cox, K. H. and Goldberg, R. B. (1988) Analysis of plant gene expression; in Plant Molecular Biology: a Practical Approach, Shaw, C. H. (eds.), pp. 1-35, IRL press, Oxford
  25. Lee, H. K., Kwon, M., Jeon, J. H., Fujioka, S., Kim, H. B., et al. (2006) An Arabidopsis short root and dwarfism mutant defines a novel locus that mediates both cell division and elongation. J. Plant Biol. 49, 61-69 https://doi.org/10.1007/BF03030789
  26. Woo, H. Y., Jeong, B. R., and Hawes, M. C. (2005) Flavonoids: from cell cycle regulation to biotechnology. Biotech. Lett. 27, 365-374 https://doi.org/10.1007/s10529-005-1521-7