Effect of Monosaccharide L-fucose and Polysaccharide Fucoidan on Sperm ${\alpha}$-L-fucosidase Activity and Relation to Sperm-oocyte Interaction in Pig

  • Song, X.X. (Faculty of Animal Science and Technology, Laiyang Agriculture College) ;
  • Park, C.K. (College of Animal Life Sciences, Kangwon National University) ;
  • Piao, Y.J. (Faculty of Animal Science and Technology, Laiyang Agriculture College) ;
  • Niwa, K. (Division of Animal Science and Technology, Faculty of Agriculture, Okayama University)
  • Received : 2006.02.06
  • Accepted : 2006.10.02
  • Published : 2007.03.01


Carbohydrate-protein interactions are known to be important in gamete interactions. Several evidence indicated that a fucose-containing sulfated polysaccharide fucoidan was potential inhibitor of fertilization in vitro and thus fucose seemed to be part of the recognition signal of gamete interaction in mammals. In recent investigation we found that ${\alpha}$-L-fucosidase activity was present in boar spermatozoa and it was related to sperm binding to and penetration into zona pellucida (ZP) in vitro. The objective of this study was to determine the effects of monosaccharide L-fucose and polysaccharide fucoidan on sperm ${\alpha}$-L-fucosidase activity and relation to sperm-oocyte interaction in pig. Results indicated that the activity of sperm ${\alpha}$-L-fucosidase was largely inhibited (62%) when sperm suspension was treated with monosaccharide L-fucose. It also significantly inhibited the number of sperm binding to ZP (32%) and penetration into zona-intact oocytes (72%), but did not inhibit penetration into zona-free oocytes when fertilization medium contained L-fucose. The chlorotetracycline (CTC) assessment showed that L-fucose did not affect induction of sperm capacitation and acrosome reaction. In contrast, the activity of sperm ${\alpha}$-L-fucosidase was not inhibited when sperm suspension was treated with polysaccharide fucoidan but sperm-ZP binding was greatly inhibited (85%) and completely blocked sperm penetration into zona-intact or zona-free oocytes. The CTC assessment showed that fucoidan increased the F pattern and decreased the AR pattern sperm. These results suggested that the different inhibitory mechanisms were present between monosaccharide L-fucose and polysaccharide fucoidan on sperm-oocyte interaction, the inhibition effect of ${\alpha}$-L-fucose on sperm binding and penetrating into ZP caused sperm ${\alpha}$-L-fucosidase inhibited by ${\alpha}$-L-fucose.


  1. Alhadeff, J. A., S. Khunsook, K. Choowongkomon, T. Baney, V. Heredia, A. Tweedie and B. Bean. 1999. Characterization of human semen alpha-L-fucosidases. Mol. Hum. Repro. 5:809-15.
  2. Boldt, J., A. M. Howe, J. B. Parkerson, L. E. Gunter and E. Kuehn. 1989. Carbohydrate involvement in sperm-egg fusion in mice. Biol. Reprod. 40:887-896.
  3. Hoshi, M. 1986. Sperm glycosidase as a plausible mediator of sperm binding to the vitelline envelope in ascidians. Adv. Exp. Med. Biol. 207:251-260.
  4. Hoshi, M., R. D. Santis, M. R. K. Pinto, F. Cotelli and R. Rosati. 1985. Sperm glycosidases as mediators of sperm-egg binding in the ascidians. Zool. Sci. 2:65-69.
  5. Huang, T. T. F. and R. Yanagimachi. 1984. Fucoidan inhibits attachment of guinea pig spermatozoa to the zona pellucida through binding to the inner acrosomal membrane and equatorial domains. Exp. Cell Res. 153:363-373.
  6. Jones, R. and C. R. Brown. 1987. Identification of a zona-binding protein from boar spermatozoa as proacrosin. Exp. Cell Res. 171:505-508.
  7. Jones, R. 1990. Identification and functions of mammalian spermegg recognition molecules during fertilization. J. Reprod. Fert. 42:89-105.
  8. Miller, D. J., X. Gong and B. D. Shur. 1993. Sperm require b-Nacetylglucosaminidase to penetrate through the egg zona pellucida. Development 118:1279-1289.
  9. Oehninger, S., G. F. Clark, D. Fulgham, P. F. Blackmore, M. C. Mahony, A. A. Acosta and G. D. Hodgen. 1992. Effect of fucoidin on human sperm-zona pellucida interactions. J. Androl. 13:519-25.
  10. Peterson, R. N., L. Russell, D. Bundmann, M. Conway and M. Freund. 1981. The interaction of living boar sperm and sperm plasma membrane vesicles with the porcine zona pellucida. Dev. Biol. 84:144-156.
  11. Peterson, R. N., L. Russell and W. P. Hunt. 1984. Evidence for specific binding of uncapacitated boar spermatozoa to porcine zonae pellucidase in vitro. J. Exp. Zool. 231:137-147.
  12. Song, X. X., P. X. Liu, K. W. Park, K. Iga and K. Niwa. 2000. Identification, localization and involvement of glycosidases in sperm-zona interaction using frozen-thawed ejaculated pig spermatozoa. J. Reprod. Develop. 45:115-125.
  13. Wassarman, P. M. 1987. The biology and chemistry of fertilization. Science NY, 235:553-560.
  14. Hirao, Y. and R. Yanagimachi. 1978. Effects of various enzymes of the ability of hamster egg plasma membranes to fuse with spermatozoa. Gamete Res. 1:3-12.
  15. Matsumoto, M., J. Hirata, N. and M. Hoshi. 2002. Sperm-egg binding mediated by sperm alpha-L-fucosidase in the ascidian, Halocynthia roretzi. Zoolog. Sci. 19:43-8.
  16. Shalgi, R., A. Mitityahu and L. Nebel. 1986. The role of carbohydrates in sperm-egg interaction in rats. Biol. Reprod. 34:446-452.
  17. Urch, U. A. 1991. Biochemistry and function of acrosin. In the Biology and Chemistry of mammalian Fertilization (Ed. P. M. Wassarman). Chicago: CRC Press, pp. 233-248.
  18. Hinrichsen-Kohane, A. C., M. Hinrichsen and W. B. Schill. 1984. Event leading to fertilization - a review. Andrologia 16:321-341.
  19. Song, X. X., X. Z. Yang, K. Iga and K. Niwa. 1999. Binding of lectins to the zona pellucida of in vitro matured pig oocytes and sperm-oocyte interaction in vitro. J. Mamm. Ova Res. 16:23-30.
  20. Ahuja, K. K. 1985. Carbohydrate determinants involved in mammalian fertilization. Am. J. Anat. 174:207-223.
  21. Drabland, J. E. and D. Mortimer. 1988. Role for fucose-sulfaterich carbohydrates in the penetration of zona pellucida free hamster eggs by hamster spermatozoa. Gamete Res. 21:353-358.
  22. Huang, T. T. F., E. Ohzu and R. Yanagimachi. 1982. Evidence suggesting that L-fucose is part of a recognition signal for sperem-zona pellucida attachment in mammals. Gamete Res. 5:355-361.
  23. Ka, H. and F. W. Bazer. 2005. Effects of keratinocyte growth factor on the uterine endometrial cells in pigs. Asian-Aust. J. Anim. Sci. 18:1708-1714.
  24. Rosati, F. and R. DeSantis. 1980. Role of the surface carbohydrates in sperm-egg interaction in Ciona intestinalis. Nature 283:762-764.
  25. Urch, U. A. and J. L. Hedrick. 1988. The inhibition of boar acrosin amidase activity by sulphated polysaccharides. Biol. Chem. Hoppe-Seyler 369:727-732.
  26. Frazier, W. and L. Glaser. 1979. Surface and cell recognition. Annu. Rev. Biochem. 48:491-523.
  27. Bellve, A. R. and D. A. O'Bren. 1983. The mammalian spermatozoon: structure and temporal assembly. In: (Ed. J. F. Hartmann) Mechanism and Control of Animal Fertilization. New York: Academic Press; pp. 55-137.
  28. Jauhiainen, A. and T. Vanha-Perttula. 1986. ${alpha}-L-fucosidase$ in the reproductive organs and seminal plasma of the bull. Biochem. Biophys. Acta. 880:91-95.
  29. Urch, U. A. and H. Patel. 1991. The interaction of boar sperm proacrosin with its natural substrate, the zona pellucida, and with polysulfated polysaccharides. Development 111:1165-1172.
  30. Wang, W. H., L. R. Abeydeera, L. R. Fraser and K. Niwa. 1995. Functional analysis using chlortetracycline fluorescence and in vitro fertilization of frozen-thawed ejaculated boar spermatozoa incubated in a protein-free chemically defined medium. J. Reprod. Fertil. 104:305-313.
  31. Lo Leggio, L., R. M. Williams and R. Jones. 1994. Some effects of zona pellucida glycoproteins and sulfated polymers on the autoactivation of boar sperm proacrosin and activity of ${\beta}-acrosin$. J. Reprod. Fert. 100:177-185.
  32. Boldt, J., A. M. Howe and J. Preble. 1988. Enzymatic alteration of the ability of mouse egg plasma membrane to interact with sperm. Biol. Reprod. 39:19-27.
  33. Tanghe, S., A. Van Soom, L. Duchateau and A. De Kruif. 2004. Inhibition of bovine sperm-oocyte fusion by the paminophenyl derivative of D-mannose. Mol. Reprod. Dev. 67:224-32.
  34. Toepfer-petersen, E., A. E. Friess, H. Nguyen and W. B. Schill. 1985. Evidence for a fucose-binding protein in boar spermatozoa. Histochem. 82:139-145.
  35. Macek, M. B. and B. D. Shur. 1988. Protein-carbohydrate complementarity in mammalian gamete recognition. Gamete Res. 20:93-109.
  36. Yanagimachi, R. 1981. Mechamisms of fertilization in mammals. In fertilization and embryonic development in vitro (Ed. L. Mastroianni and J. D. Biggers), New York: Plenum Press, pp. 32-182.
  37. Brown, C. R. and R. Jones. 1987. Binding of zona pellucida proteins to a boar sperm polypeptide of Mr 53000 and identification of zona moieties involved. Development 99:333-339.
  38. Zahler, W. L. and G. A. Doak. 1975. Isolation of the outer acrosomal membrane on bull sperm. Biochem. Biophys. Acta. 406:479-488.
  39. Mahony, M. C., S. Oehninger, G. F. Clark, A. A. Acosta and G. D. Hodgen. 1991. Fucoidin inhibits the zona pellucida-induced acrosome reaction in human spermatozoa. Contraception 44:657-65.
  40. Moreno, R., P. Orihuela and C. Barros. 2001. Differential effects of polysulphates between mouse and hamster during in vitro fertilization. Andrologia 33:19-25.
  41. Ahuja, K. K.1982. Fertilization studies in the hamster: The role of cell surface carbohydrates. Exp. Cell Res. 140:353-362.
  42. Khunsook, S., B. S. Bean, S. R. McGowan and J. A. Alhadeff. 2003. Purification and characterization of plasma membraneassociated human sperm alpha-L-fucosidase. Biol. Reprod. 68:709-716.
  43. Miller, D. J., M. B. Macek and B. D. Shur. 1992. Complementarity between sperm surface ${\beta}-1$,4- galactosyltransferase and eggcoat ZP3 mediates sperm-egg binding. Nature 357:589-593.

Cited by

  1. Assessment of buffalo semen with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay vol.88, pp.3, 2010,