Decomposition of Benzene by Dielectric Barrier Discharge

유전체 장벽 방전에 의한 벤젠의 분해

  • Lee, Yong Hun (Department of Chemical Engineering and RIC-ETTP (Regional Innovation Center for Environmental Technology of Thermal Plasma), Inha University) ;
  • Lee, Jae-Ho (Department of Chemical Engineering and RIC-ETTP (Regional Innovation Center for Environmental Technology of Thermal Plasma), Inha University) ;
  • Park, Dong-Wha (Department of Chemical Engineering and RIC-ETTP (Regional Innovation Center for Environmental Technology of Thermal Plasma), Inha University)
  • 이용훈 (인하대학교 화학공학과/열플라즈마환경기술연구센터) ;
  • 이재호 (인하대학교 화학공학과/열플라즈마환경기술연구센터) ;
  • 박동화 (인하대학교 화학공학과/열플라즈마환경기술연구센터)
  • Received : 2006.12.15
  • Accepted : 2007.05.03
  • Published : 2007.06.10

Abstract

Decomposition of benzene and selectivity of byproducts were investigated by using Dielectric Barrier Discharge (DBD) at atmospheric pressure. In order to increase the decomposition rate and selectivity of byproducts, two types of catalysts, H-ZSM-5 and Na-Y, were optionally employed inside the reactor of the process. The decomposition efficiency of benzene was investigated on the DBD and DBD/catalyst systems at various processing parameters including discharge voltage, residence time, and concentration of benzene. The results showed that, compared with the DBD only, the catalyst-assisted DBD process as a hybrid discharge type had an improved decomposition efficiency at the same process conditions of discharge voltage and residence time

Keywords

dielectric barrier discharge;catalyst;benzene;discharge voltage;decomposition efficiency

Acknowledgement

Supported by : 인하대학교

References

  1. S.-M. Oh, H.-H. Kim, A. Ogata, H. Einaga, S. Futamura, and D.-W. Park, Catalysis Letters, 99, 101 (2005)
  2. H.-C. Kang, I.-S. Woo, and A.-S. Kang, J. Ind. Eng. Chem., 6, 231 (2000)
  3. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, IEEE Trans. Ind. Appl., 35, 1289 (1999)
  4. J. F. Xia, X. X. Gao, J. Y. Kong, H. X. Hui, M. Cui, and K. P. Yan, Plasma Chem. Plasma Process., 20, 225 (2000) https://doi.org/10.1023/A:1007069123634
  5. H. Einaga, T. Ibusuki, and S. Futamura, Conf. Rec. 2000 IEEE Trans. Ind. Appl., 2, 858 (2000)
  6. S.-M. Oh, H.-H. Kim, H. Einaga, A. Ogata, S. Futamura, and D.-W. Park, Thin Solid Films, 506, 418 (2006)
  7. A. Zhang, S. Futamura, and T. Yamamoto, J. Air & Waste Manage. Assoc., 49, 1442 (1999)
  8. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto, Plasma Chem. Plasma Process., 19, 383 (1999)
  9. H. Kohno, A. A Berezin, J.-S. Chang, M. Tamura, T. Yamamoto, A. Shibuya, and S. Honda, IEEE Trans. Ind. Appl., 34, 953 (1998)
  10. T. Yamamoto, J.-S. Chang, A. A Berezin, H. Kohno, S. Honda, and A. Shibuya, J. Adv. Oxid. Technol., 1, 67 (1996)
  11. I.-S. Woo, H.-C. Kang, J.-K. Cho, M.-W. Hwang, A.-S. Kang, and M. Yamaguma, J. Ind. Eng. Chem., 7, 105 (2001)
  12. K. P. Francke, H. Miessner, and R. Rudolph, Catalysis Today, 59, 411 (2000) https://doi.org/10.1016/S0920-5861(00)00306-0
  13. J.-S. Chang, T. Myint, A. Chakrabarti, and A. Miziolek, Japanese J. Appl. Phys., 36, 5018 (1997)
  14. J.-S. Chang, J. Aerosol Sci., 20, 1089 (1989)