Preparation of Honeycomb Adsorbent for Carbon Dioxide Adsorption and Its Characteristics

이산화탄소 흡착제거를 위한 허니컴 흡착소자의 제조 및 이의 특성

  • Yoo, Yoon-Jong (Functional Materials Research Center, Korea Institute of Energy Research) ;
  • Kim, Hong-Soo (Functional Materials Research Center, Korea Institute of Energy Research) ;
  • Park, Jong-Ho (Chemical Process Research Center, Korea Institute of Energy Research) ;
  • Han, Sang-Sub (Chemical Process Research Center, Korea Institute of Energy Research) ;
  • Cho, Soon-Haeng (Chemical Process Research Center, Korea Institute of Energy Research)
  • 유윤종 (기능재료연구센터 한국에너지기술연구원) ;
  • 김홍수 (기능재료연구센터 한국에너지기술연구원) ;
  • 박종호 (화학공정연구센터 한국에너지기술연구원) ;
  • 한상섭 (화학공정연구센터 한국에너지기술연구원) ;
  • 조순행 (화학공정연구센터 한국에너지기술연구원)
  • Received : 2007.03.20
  • Accepted : 2007.04.24
  • Published : 2007.06.10

Abstract

The honeycomb adsorbents and adsorption process for carbon dioxide removal from fuel gas were investigated. Zeolite paper was made with Na-X zeolite powder and ceramic fiber as raw materials. $Li^+$, $Ca^{2+}$ or $K^+$ ion exchanges for Na-X zeolite and additional Na-X coating were performed on zeolite paper for increasing the carbon dioxide adsorption capacity, after that the adsorption characteristics of the samples were analyzed. Among the ion exchanged samples, $Li^+$ ion exchanged zeolite paper was most promising but its carbon dioxide adsorption capacity was less than expected for process application. However, additional Na-X coating was found to be an effective method for increasing the carbon dioxide adsorption capacity of the zeolite paper for process application. The carbon dioxide breakthrough test of the honeycomb adsorbent prepared with the zeolite paper was studied, and fuel gas treatment capacity was calculated when the honeycomb adsorbent was used in the rotary adsorption process.

Keywords

carbon dioxide;Na-X zeolites;honeycomb adsorbent;zeolite paper;adsorption

Acknowledgement

Supported by : 에너지관리공단

References

  1. Y. Shimomura, Modern Power System, January, 15 (2003)
  2. V. G. Gomes and W. K. Yee, Separation and Purification Technology, 28, 161 (2002) https://doi.org/10.1016/S1383-5866(02)00064-3
  3. X. Xu, C. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, Microporous and Mesoporous Materials, 62, 29 (2003) https://doi.org/10.1016/S1387-1811(03)00388-3
  4. Y. J. Yoo, H. S. Kim, and M. H. Han, Separation Sci. Tech., 40, 1635 (2005) https://doi.org/10.1081/SS-200056664
  5. S. K. Wirawan and D. Creaser, Microporous and Mesoporous Materials, 91, 196 (2006) https://doi.org/10.1016/j.micromeso.2005.11.047
  6. K. S. Walton, M. B. Abney, and M. D. LeVant, Microporous and Mesoporous Materials, 91, 78 (2006) https://doi.org/10.1016/j.micromeso.2005.11.023
  7. T. C. Drage, A. Arenillas, K. M. Smith, C. Pevida, and S. Piippo, C. E. Snape, Fuel, 86, 22 (2007) https://doi.org/10.1016/j.fuel.2006.07.003
  8. Y. J. Yoo, H. S. Kim, M. H. Han, and G. I. Jang, J. Kor. Ceram. Soc., 39, 1035 (2002)
  9. R. W. Hughes, D. Y. Lu, E. J. Anthony, and A. Macchi, Fuel Processing Tech., 86, 1523 (2005) https://doi.org/10.1016/j.fuproc.2005.01.006
  10. G. P. Knowles, J. V. Graham, S. W. Delaney, and A. L. Chaffee, Fuel Processing Technology, 86, 1435 (2005) https://doi.org/10.1016/j.fuproc.2005.01.014
  11. D. Coutinho and K. J. Balkus, Microporous and Mesoporous Materials, 52, 79 (2002)
  12. A. L. Chaffee, Fuel Processing Technology, 86, 1473 (2005) https://doi.org/10.1016/j.fuproc.2005.01.013
  13. K. T. Chue, J. N. Kim, Y. J. Yoo, S. H. Cho, and R. T. Yang, Ind. Eng. Chem. Res., 34, 591 (1995)
  14. M. Ishibashi, H. Ota, N. Akutsu, and S. Umeda, Energy Convertsion and Management, 37, 929 (1996)
  15. J. H. Park, H. T. Beom, J. N. Kim, and S. H. Cho, Ind. Eng. Chem. Res., 41, 4122 (2002)
  16. R. Bounaceur, N. Lape, D. Roizard, and C. Vallieres, E. Favre, Energy, 31, 2556 (2006) https://doi.org/10.1016/j.energy.2005.10.038
  17. P. J. Harlick and F. H. Tezel, Microporous and Mesoporous Materials, 76, 71 (2004) https://doi.org/10.1016/j.micromeso.2004.07.035
  18. X. Xu, C. Song, B. G. Miller, and A. W. Scaroni, Fuel Processing Technology, 86, 1457 (2005) https://doi.org/10.1016/j.fuproc.2005.01.002