Determination of inclusion complex formation constants for the β-CD and [Cu(Dien)(sub-Py)]2+ ion by the spectrophotometric methods

분광 광도법에 의한 β-CD와 [Cu(Dien)(sub-Py)]2+이온간의 복합체 형성 상수 결정

  • Kim, Chang Suk (School of Science Education, Chungbuk National University) ;
  • Oh, Ju Young (School of Science Education, Chungbuk National University)
  • 김창석 (충북대학교 사범대학 과학교육학부) ;
  • 오주영 (충북대학교 사범대학 과학교육학부)
  • Received : 2007.07.27
  • Accepted : 2007.09.06
  • Published : 2007.10.25

Abstract

The formation of inclusion complexes between ${\beta}$-cyclodextrin and diethylenetriamine substituted-pyridine copper(II) perchlorate; [Cu(dien)(sub-py)] $(ClO_4)_2$, were studied by spectrophotometric methods. On account of charge-transfer band(MLCT) and $^2T_2{\rightarrow}^2E$, the two high peaks were observed as an inclusion complex for the [${\beta}$-CD]$[Cu(dien)(p-Cl-py)]^{2+}$ in the ultraviolet region of the spectrum. The ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion formed a 1:1 complex, and the formation constants were decreased with the increasing temperatures, due to weak binding energy between ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion. This reaction was controlled by enthalpy. In a correlation of the Hammett substituent constants and formation constants for the reaction, formation constants were increased by strong binding energy in the inclusion complexes when electron donating groups were substituted in pyridine ring.

Acknowledgement

Supported by : 충북대학교

References

  1. J. Szejtle, Cyclodextrins Inclusion Complexes, Academiai Kiado; Bubapest, p177, 1982
  2. K. A. Connors, J. Pharm. Sci., 85, 796 (1996)
  3. B. D. Wagnerand and P. J. Macdonald and M. Wagner, J. Chem. Edu., 77, 178 (2000)
  4. K. K. Park and J. P. Lee and J. W. Park, Bull. Korean Chem. Soc., 15, 171 (1994)
  5. C. S. Kim and T. S. Kim, J. Korea Chem. Soc., 37(2), 265 (1993)
  6. W. Byers and A. B. P. Lever and R. V. Parish, Inorg. Chem. 7, 1835 (1968)
  7. J. H. Jung and C. Takehisa and Y. Sakata and T. Kaneda, Chem. Lett., 147 (1996)
  8. H. S. Choi. Bull. Korean Chem. Soc., 13, 474 (1992)
  9. P. K. Zarzycki and H. Lamparczyk, J. Chem. Educ., 73, 459 (1996)
  10. J. Hernndez-benito and S. Gonzlez-Mancebo and E. Calle and M. P. Garca-Santos and J. Casado, J. Chem. Educ., 76, 419 (1999)
  11. K. A. Connors, Chem. Rev., 97, 1325 (1997)
  12. W. Saenger, Angew. Chem. Int. Ed. Engl. 19, 344 (1980)
  13. J. Defaye and C. O. Mellet and J. M. Garica and S. Maciejwski, Mol. Reconi. Inclus., 313 (1998)
  14. K. Ikeda and K. Uekama and M. Otagiri, Chem. Pharm. Bull., 23, 201 (1975)
  15. D. F. Schriver and P. W. Atkins, 'Inorganic Chemistry' 3rd. ed. Oxford, 1999
  16. F. Cramer and W. Saenger and H. Spatz, J. Am. Chem. Soc., 89, 14 (1967) https://doi.org/10.1021/ja00980a039
  17. P. K. Zarzycki and H. Lamparczyk, J. Chem. Educ., 73, 459 (1996)
  18. J. Szejtle, 'Cyclodextrin Technology', Klumer Academic Publishers, Dordrecht, p1-4, 1988
  19. K. K. Park and H. S. Park and J. W. Park, Bull. Korean Chem. Soc., 13, 359 (1992)
  20. J. Szejtle, 'Cyclodextrins; Inclusion Complexes', Academiai Kiado; Bubapest, p338, 1982
  21. J. Szejtli and M. Szejtli and L.Szente and L. Hung. Dat. J. Am. Chem. Soc., 89, 577 (1978)
  22. K. Kano and N. Tanaka and H. Minamizono, Mol. Reconi. Inclus., 191 (1998)
  23. R. Breslow and B. Zhang, J. Am. Chem. Soc., 118, 8495 (1996). https://doi.org/10.1021/ja961567b
  24. H. S. Choi. Bull. Korean Chem. Soc., 13, 4179 (1992)
  25. T. Moriya and H. Kurita and K. Matsumoto, J. Am. Chem. Soc. 113, 2301 (1991) https://doi.org/10.1021/ja00003a037
  26. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949)
  27. D. Diaz and I. Vargas-Baca and J. Gracia-Mora, J. Chem. Educ., 71, 708 (1994)
  28. H. J. Hwang and S. H. Lee and J. W. Park, Bull. Korean Chem. Soc., 21, 245 (2000)