DOI QR코드

DOI QR Code

Salsolinol, a Tetrahydroisoquinoline Catechol Neurotoxin, Induces Human Cu,Zn-superoxidie Dismutase Modificaiton

  • Published : 2007.09.30

Abstract

The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinson's disease (PD). In the present study, we examined the pattern of human Cu,Zn-superoxide dismutase (SOD) modification elicited by salsolinol. When Cu,Zn-SOD was incubated with salsolinol, some protein fragmentation and some higher molecular weight aggregates were occurred. Salsolinol led to inactivation of Cu,Zn-SOD in a concentration-dependent manner. Free radical scavengers and catalase inhibited the salsolinol-mediated Cu,Zn-SOD modificaiton. Exposure of Cu,Zn-SOD to salsolinol led also to the generation of protein carbonyl compounds. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of salsolinol in the presence of Cu,Zn-SOD. Therefore, the results indicate that free radical may play a role in the modification and inactivation of Cu,Zn-SOD by salsolinol.

References

  1. Bembenek, M. E., Abell, C. W., Christy, L. A., Rozwadowska, M. D., Gessner, A. W. and Brossi, A. (1983) Inhibition of monoamine oxidase-A and oxidase-B by simple isoquinoline alkaloids-racemic and optically active 1,2,3,4-tetrahydroisoquinoline, 3,4-dihydroisoquinoline, and fully aromatic isoquinoline. J. Med. Chem. 33, 147-152. https://doi.org/10.1021/jm00163a025
  2. Bowling, A. C., Schulz, J. B., Brown, R. H. Jr. and Beal M. F. (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322-2325. https://doi.org/10.1111/j.1471-4159.1993.tb07478.x
  3. Choi, W. S., Yoon, S. Y., Oh, T. H., Choi, E. J., OMalley, K. L. and Oh, Y. J. (2003) Two distinct mechanisms are involved in 6-hydroxydopamine- and $MPP^+-induced$ dopaminergic neuronal cell death. J. Neurosci. Res. 57, 86-94. https://doi.org/10.1002/(SICI)1097-4547(19990701)57:1<86::AID-JNR9>3.0.CO;2-E
  4. Crow, J. P., Sampson, J. B., Zhuang, Y., Thompson, J. A. and Beckman, J. S. (1997) Dcreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J. Neurochem. 69, 1936-1944. https://doi.org/10.1046/j.1471-4159.1997.69051936.x
  5. Facchinctti, F., Dawson, V. L. and Dawson, T. M. (1998) Free radicals as mediators on neuronal injury. Cell Mol. Neurobiol. 18, 667-682. https://doi.org/10.1023/A:1020221919154
  6. Halliwell, B. and Gutteridge, J. M. C. (1992) Biologically relevant metal ion-dependent OH generation. An uptade. FEBS Lett. 307, 108-112. https://doi.org/10.1016/0014-5793(92)80911-Y
  7. Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A. and Butterfield, D. A. (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: releavance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270-3274. https://doi.org/10.1073/pnas.91.8.3270
  8. Holtz, W. A., Turetzky, J. M., Jong Y. J. and OMalley, K. L. (2006) Oxitdative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonianmimetics. J. Neurochem. 99, 54-59. https://doi.org/10.1111/j.1471-4159.2006.04025.x
  9. Ihara, Y., Chuda, M., Kuroda, S. and Hayabara, T. (1999) Hydroxyl radical and superoxide dismutase in blood of patients with Parkinsons disease: realationship to clinical data. J. Neurol. Sci. 170, 90-95. https://doi.org/10.1016/S0022-510X(99)00192-6
  10. Ihara, Y., Nobukuni, K., Takata, H. and Hayabara, T. (2005) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu,Zn-superoxide dismutase mutation. Neurol. Res. 27, 105-108. https://doi.org/10.1179/016164105X18430
  11. Ilic, T., Jovanovic, M., Jovicic, A. and Tomovic, M. (1998) Oxidative stress and Parkinson's disease. Vojnosanit. Pregl. 55, 463-468
  12. Ilic, T., Jovanovic, M., Jovicic, A. and Tomovic, M. (1999) Oxidative stress indicators are elevated in de novo Parkinson's disease patients. Funct. Neurol. 14, 141-147.
  13. Ikeda, H., markey, C. J. and Markey, S. P. (1993) Search for neurotoxins structurally related to 1-methyl-4-phenylpyridine (MPPT) in the pathogenesis of Parkinsons disease. Brain Res. 575, 285-298. https://doi.org/10.1016/0006-8993(92)90092-N
  14. Imlay, J. A., Chin, S. M. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640-642. https://doi.org/10.1126/science.2834821
  15. Jenner, P., Dexter, D. T., Sian, J., Schapira, A. H. and Marsden, C. D. (1992) Oxidative stress as a cause of migral cell death in Parkinsons disease and incidental Lewy body disease. The royal kings and queens parkinsons disease research group. Ann. Neural. 32, Suppl: 582-587.
  16. Jung, Y. J. and Surh, Y. J. (2001) Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinolin alkaloid. Free Radical. Biol. Med. 30, 1407-1417. https://doi.org/10.1016/S0891-5849(01)00548-2
  17. Kang, J. H., Choi, B. J. and Kim, S. M. (1997) Expression and characterization of recombinant human Cu, Zn-superoxide dismutase in Escherichia coli. J. Biochem. Mol. Biol. 30, 60-65.
  18. Kim, H. J., Soh, Y., Jang, J. H., Lee, J. S., Oh, Y. J. and Surh, Y. J. (2001) Differential cell death induced by salsolinol with and without copper: possible involvement of reactive oxygen species. Mol. Pharmacol. 60, 440-449.
  19. Kim, K. S., Choi, S. Y., kwon, H. Y., Won, M. H., Kang, T. C. and Kang, J. H. (2002) Aggregation of alpha-synuclein induced by Cu,Zn-superoxide dismutase and hydrogen peroxide system. Free Radical. Biol. Med. 32, 544-550. https://doi.org/10.1016/S0891-5849(02)00741-4
  20. Kim, N. H. and Kang, J. H. (2006) Oxidative damage of DNA induced by the cytochrome c and hydrogen peroxide system. J. Biochem. Mol. Biol. 39, 452-456. https://doi.org/10.5483/BMBRep.2006.39.4.452
  21. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriphage $T_4$. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  22. Levine, R. L., Williams, J. A., Stadtman, E. R. and Shacter, E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346-357. https://doi.org/10.1016/S0076-6879(94)33040-9
  23. Maria, C. S., Revilla, E., Ayala, A., de la Cruz, C. P. and Machado, A. (1995) Changes in the histidine residues of Cu/Zn superoxide dismutase during aging. FEBS Lett. 374, 85-88. https://doi.org/10.1016/0014-5793(95)01083-Q
  24. McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase. J. Biol. Chem. 224, 6049-6055.
  25. McNaught, K. S., Altomare, C., Cellamare, S., Carotti, A., Thull, U., Testa, P. A., Testa, B., Jenner, P. and Marsden, C. D. (1995) Inhibition of alpha-ketoglutarate dehydrogenase by isoquinoline derivatives structurally relatedto 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). NeuroReport. 6, 1105-1108. https://doi.org/10.1097/00001756-199505300-00008
  26. Montine, T. J., Farris, D. B. and Graham, D. G. (1995) Covalent crosslinking of neurofilament proteins by oxidized catechols ass a potential mechanism of Lewy body formation. J. Neuropath. Exp. Neurol. 54, 311-319. https://doi.org/10.1097/00005072-199505000-00004
  27. Moser, A. and Kompf, D. (1992) Presence of methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines, derivatives of the neurotoxin isoquinoline, in Parkinsonian lumbar CSF. Life Sci. 50, 1885-1891. https://doi.org/10.1016/0024-3205(92)90549-5
  28. Morikawa, N., Naoi, M., Maruyama, W., Ohta, S., Kotake, Y., Kawai, H., Niwa, T., Destert, P. and Mizuno, Y. (1998) Effects of various tetrahydroisoquinoline derivatives an mitochondrial respiration and electron fransfer complwxs. J. Neural. Transm. 105, 677-688. https://doi.org/10.1007/s007020050087
  29. Multhaup, G., Schlicksupp, A., Hesse, L., Behler, D., Ruppert, T., Masters, C. L. and Beyreuther, K. (1996) The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I). Science 271, 1406-1409. https://doi.org/10.1126/science.271.5254.1406
  30. Naoi, M., Maruyama, W., Akao, Y. and Yi, H. (2002) Dopaminederived endogenous N-methyl-(R)-salsolinol: its role in Parkinsons disease. Neurotoxicol. Teratol. 24, 579-591. https://doi.org/10.1016/S0892-0362(02)00211-8
  31. Naoi, M., Marayama, W., Dostert, P., Kohda, K. and Kaiya, T. A. (1996) Novel enzyme enatitio-selectively synthesizes(R) salsolinol, a precursor of a dopaminergic neurotoxin, N-methyl(R) salsolinol. Neurosci. Lett. 212, 183-186. https://doi.org/10.1016/0304-3940(96)12807-X
  32. Niwa, T., Takeda, T., Yoshizumi, H., Tatematsu, A., Yoshida, M., Dosterdt, P., Naoi, M. and Nagatsu, T. (1991) Presence of 2-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, and 1,2-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, novel endogenous amines, in Parkinsonian and normal human brains. Biochem. Biophys. Res. Commun. 177, 603-609. https://doi.org/10.1016/0006-291X(91)91831-V
  33. O'Connell, M. J. and Peters, T. J. (1987) Ferritin and haemosiderin in free radical generation, lipid peroxidation and protein damage. Chem. Phys. Lipids. 45, 241-249. https://doi.org/10.1016/0009-3084(87)90067-3
  34. Ohta, S., Kohno, M., Makino, Y., Tachikawa, O. and Hirobe, M. (1987) Tetrahydroisoquinoline and 1-methyltetrahydroisoquinoline are present in the human brains relation to Parkinsons disease. Biomed. Res. 8, 453-456. https://doi.org/10.2220/biomedres.8.453
  35. Pall, H. S., Williams, A. C., Blake, D. R., Lunec, J., Gutteridge, J. M., Hall, M. and Taylor, A. (1987) Raised cerebrospinal-fluid copper concentration in Parkinson's disease. Lancet 2, 238-241.
  36. Sagripanti, J. L. and Kraemer, K. H. (1989) Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J. Biol. Chem. 264, 1729-1734.
  37. Sagripanti, J. L., Swicord, M. L. and Davis C. C. (1987) Microwave effects on plasmid DNA. Radiat. Res. 110, 219-231. https://doi.org/10.2307/3576900
  38. Saito, Y., Nishio, k., Oqawa, Y., Kinumi, J., Yoshida, Y., Masuo, Y. and Niki, E. (2007) Molecular mechanism of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and independent action. Free Radic. Biol. Med. 42, 675-685. https://doi.org/10.1016/j.freeradbiomed.2006.12.004
  39. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F.-H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  40. Surh, Y. J., Jung, Y. J., Jung, J. H., Lee, J. S. and Yoon, H. R. (2002) Iron enhancement of oxidative DNA damage and neuronal cell death induced by salsolinol. J. Toxicol. Environ. Health. Part A. 65, 473-488. https://doi.org/10.1080/15287390252808127
  41. Tainer, J. A., Gertzoff, E. D., Richardson, J. S. and Richardson, D. C. (1983) Structure and mechanism of copper, zinc superoxide dismutase. Nature 306, 284-287. https://doi.org/10.1038/306284a0
  42. Wanpen, S., Koonccumchoo, P., Shrali, S., Govitrapong, P. and Ebadi, M. (2004) Salsolinol a dopamine-derived tetrahydroquindine induces cell death by causing oxidative stress in dopaminergic SH-SY5Y cells, and the said effect is attenuated by metallothionein. Brain Res. 1005, 67-76. https://doi.org/10.1016/j.brainres.2004.01.054
  43. Wu, Y., Blum, D., Nissou, M. F., Benabid, A. L. and Verna, J. M. (1996) Unlike $MPP^+$, apoptosis induced by 6-OHDA in PC12 cells is independent of mitochondrial inhibition. Neurosci. Lett. 221, 69-71. https://doi.org/10.1016/S0304-3940(96)13276-6

Cited by

  1. Chip electrophoresis of active banana ingredients with label-free detection utilizing deep UV native fluorescence and mass spectrometry vol.399, pp.5, 2011, https://doi.org/10.1007/s00216-010-4557-z
  2. Oxidative modification of human ceruloplasmin induced by a catechol neurotoxin, salsolinol vol.49, pp.1, 2016, https://doi.org/10.5483/BMBRep.2016.49.1.103
  3. Increased vulnerability of parkin knock down PC12 cells to hydrogen peroxide toxicity: The role of salsolinol and NM-salsolinol vol.233, 2013, https://doi.org/10.1016/j.neuroscience.2012.12.045
  4. An Overview of Endogenous Catechol-Isoquinolines and Their Related Enzymes: Possible Biomarkers for Parkinson’s Disease vol.1, pp.2, 2012, https://doi.org/10.1007/s13670-012-0012-7
  5. Effect of Oleracein E, a Neuroprotective Tetrahydroisoquinoline, on Rotenone-Induced Parkinson’s Disease Cell and Animal Models vol.8, pp.1, 2017, https://doi.org/10.1021/acschemneuro.6b00291