Nutrient Intake, Acid Base Status and Growth Performance of Thalli Lambs Fed Varying Level of Dietary Cation-anion Difference

  • Sarwar, M. (Institute of Animal Nutrition and Feed Technology, University of Agriculture, Faisalabad) ;
  • Shahzad, M. Aasif (Institute of Animal Nutrition and Feed Technology, University of Agriculture, Faisalabad) ;
  • Nisa, Mahr-un (Institute of Animal Nutrition and Feed Technology, University of Agriculture, Faisalabad)
  • Received : 2006.06.06
  • Accepted : 2006.11.02
  • Published : 2007.11.01


Influence of -110, +110, +220 and +330 mEq/kg of dry matter (DM) dietary cation-anion difference (DCAD) on growth performance of Thalli lambs were examined in a randomized complete block design. Four DCAD diets were randomly allotted to four groups, with ten lambs in each group. A linear increase in nutrient intake was recorded with increasing DCAD level. The digestibilities of nutrients were higher in lambs fed -110 DCAD diet than those fed +110, +220 and +330 DCAD diets. Lambs fed +330 DCAD diet had higher nitrogen balance than those fed -110 and +110 DCAD diets. Blood pH and serum $HCO_3$ increased with increasing DCAD level. Serum chloride was higher in lambs fed -110 DCAD diet, while serum (Na+K)-(Cl+S) increased linearly with increasing DCAD level. Serum calcium increased with decreasing DCAD level while serum magnesium and phosphorus remained unaffected. Lambs fed -110 DCAD diet had higher Ca balance than those fed +110, +220 and +330 DCAD diets. Urine pH increased with increasing DCAD level. Lambs fed +220 and +330 DCAD diets gained more weight than those fed -110 and +110 DCAD diets. In conclusion, increased DCAD level not only increased the dry matter intake but also improved the weight gain of growing Thalli lambs.


DCAD;Thalli Lambs;Nitrogen and Calcium Balance;Growth


  1. Espino, L., F. Guerrero, M. L. Suarez, G. Santamarina, A. Goico and L. E. Fidalgo. 2003. Long term effects of dietary cation anion difference on acid base status and bone morphology in reproducing ewes. J. Vet. Med. 50:488-495.
  2. Chicco, C. F., C. B. Ammerman, J. P. Feaster and B. G. Dunavant. 1973. Nutritional interrelationships of dietary calcium, phosphorus and magnesium in sheep. J. Dairy Sci. 36:986-993.
  3. AOAC. 1990. Official Methods of Analysis. 15th Ed. Association of Official Analytical Chemists, Arlington, Virginia, USA.
  4. Block, E. 1994. Manipulation of dietary cation-anion difference on nutritionally related production diseases, productivity, and metabolic responses of dairy cows. J. Dairy Sci. 77:1437-1450.
  5. Challa, A., J. R. Krieg, M. A. Thabet, J. D. Veldhuis and J. M. C. Chan. 1993. Metabolic acidosis inhibits growth hormones secretion in rats: mechanism of growth retardation. Am. J. Physiol. 65:547-553.
  6. Jackson, J. A., V. Akay, S. T. Franklin and D. K. Aaron. 2001. The effect of cation-anion difference on calcium requirement, feed intake, body weight gain, and blood gasses and mineral concentrations of dairy calves. J. Dairy Sci. 84:147-153.
  7. Jackson, J. A. and R. W. Hemken. 1994. Calcium and cation-anion difference effects on feed intake, body weight gain, and humoral response of dairy calves. J. Dairy Sci. 77:1430-1436.
  8. Hu, W. and M. R. Murphy. 2004. Dietary cation-anion difference effects on performance and acid-base status of lactating dairy cows: A meta-analysis. J. Dairy Sci. 87:2222-2229.
  9. Goff, J. P., R. L. Horst, F. J. Mueller, J. K. Miller, G. A. Kiess and H. H. Dowlen. 1991. Addition of chloride to a prepartal diet high in cations increases 1, 25-dihydroxyvitamin D response to hypocalcemia preventing milk fever. J. Dairy Sci. 74:3863-3871.
  10. Guyton, A. C. 1976. Text book of medical physiology. W.B. Saunders Co., Philadelphia, PA.
  11. Harold, V. 1976. Practical clinical biochemistry. 4th Ed. Arnold-Heinemann Publisher (Pvt.) New Delhi. India.
  12. Gaynor, P. J., F. J. Mueller, J. K. Miller, N. Ramsey, J. P. Goff and R. L. Horst. 1989. Parturient hypocalcemia in Jersey cows fed alfalfa haylage based diets with different cation to anion ratios. J. Dairy Sci. 72:2525-2529.
  13. Fettman, M. J., L. E. Chase, J. Bentinck-Smith, C. E. Coppock and S. A. Zinn. 1984. Nutritional chloride deficiency in early lactation Holstein cows. J. Dairy Sci. 67:2321-2327.
  14. Fredeen, A. H., E. J. DePeters and R. L. Baldwin. 1988. Effects of acid-base disturbances caused by differences in dietary fixed ion balance on kinetics of calcium metabolism in ruminants with high calcium demand. J. Anim. Sci. 66:174-184.
  15. Krijgsheld, K. R., H. Frankena, F. Scholtens, J. Zweens and G. J. Mulder. 1979. Absorption, serum levels and urinary excretion of inorganic sulfates after oral administration of sodium sulfate in the conscious rat. Biochem. Biophy. Acta 86:492-499.
  16. Khan, Z. I., A. Hussain, M. Ashraf and L. R. McDowell. 2006. Mineral status of soils and forages in southwestern punjabpakistan: micro-minerals. Asian-Aust. J. Anim. Sci. 19:1139-1147.
  17. Joyce, P. W., W. K. Sanchez and J. P. Goff. 1997. Effect of anionic salts in prepartum diets based on alfalfa. J. Dairy Sci. 80:2866-2875.
  18. Jackson, J. A., D. M. Hopkins, Z. Xin and R. W. Hemken. 1992. Influence of cation-anion balance on feed intake, body weight gain, and humoral response of dairy calves. J. Dairy Sci. 75:1281-1286.
  19. Lomba, F., G. Chauvaux, E. Teller, L. Lengele and V. Benefit. 1978. Calcium digestibility in sows as influenced by the excess of alkalina ions over stable acid ions in their diets. Br. J. Nutr. 39:425-429.
  20. May, R. C., R. A. Kelly and W. E. Mitch. 1986. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J. Clin. Invest. 77:614-621.
  21. Mongin, P. 1980. Recent advances in dietary cation- anion balance: applications in poultry. Hoc. Nutr. Soc. 40:285-292.
  22. National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. Ed. Natl. Acad. Sci., Washington, DC. pp. 131-132.
  23. Roche, J. R., D. Dalley, P. Moate, C. Grainger, M. Rath and F. O. Mara. 2003. Dietary cation -anion difference and the health and production of pasture-fed dairy cows 2. non-lactating prepartum Cows. J. Dairy Sci. 86:979-986.
  24. Pehrson, B., C. Svensson, I. Gruvaeus and M. Virkki. 1999. The influence of acidic diets on the acid-base balance of dry cows and the effect of fertilization on the mineral content of grass. J. Dairy Sci. 82:1310-1316.
  25. Robertson, J. A. 1987. Metabolic and hormonal responses to neuroleptanalegesia (etorphine and acepromazine) in the horse. Equine Vet. J. 19:214-217.
  26. Roche, J. R. 1999. Dietary cation-anion difference for pasture-fed dairy cows. Ph.D. Diss., University College, Dublin, Ireland.
  27. Roche, J. R., S. Petch and J. L. Kay. 2005. Manipulating the dietary cation anion difference via drenching to early lactating dairy cows grazing pasture. J. Dairy Sci. 88:264-276.
  28. Sanchez, W. K. 1994.Cation-anion concepts for lactating dairy rations; Cation-anion applications for lactating dairy cattle. Pages 1-13 in Proceedings of Mallinckrodt Feed Ingredients Conference. Rochester, NY.
  29. Schonewille, J. T., A. T. Van't Klooster, A. Dirkswager and A. Bayen. 1994. Stimulatory effect of an anion (chloride)-rich ration on apparent calcium absorption in dairy cows. Live Prod. Sci. 40:233-240.
  30. Sikka, P. and D. Lal. 2006. Studies on vitamin mineral interactions in relation to passive transfer of immunoglobulins in buffalo calves. Asian-Aust. J. Anim. Sci. 19:825-830.
  31. Sarwar, M., M. Nisa, M. A. Khan and M. Mushtaque. 2006. Chemical composition, herbage yield, nutritive value of Penicum antidotale and Pennisetum orientale for Nili Ravi buffaloes at different clipping intervals. Asian-Aust. J. Anim. Sci. 19:176-180.
  32. Schade, D. S., R. P. Eaton, K. G. Alberti and D. G. Johnson. 1981. Insuline resistance In: Diabetic Coma: Ketoacedic and hyperosmolar, p. 116. Albuquereque: University of New Mexico Press.
  33. Sarwar, M., M. Sohaib, M. A. Khan and M. Nisa. 2003. Effect of feeding saturated fat on milk production and composition in crossbred dairy cows. Asian Aust. J. Anim. Sci. 16:204-210.
  34. Sanchez, W. K. 2003. The latest in dietary cation-anion difference (DCAD) nutrition. Proceeding of 43nd annual dairy cattle day.26th March Main Theater. University of California. Davis Campus.
  35. Sarwar, M., J. K. Firkins and M. L. Estridge. 1992. Effects of varying forages and concentrates carbohydrates on nutrients digestibilities and milk production by dairy cows. J. Dairy Sci. 75:1533-1539.
  36. Sanchez, W. K., D. K. Beede and J. A. Cornell. 1997. Dietary mixtures of sodium bicarbonate, sodium chloride, and potassium chloride: Effects on lactational performance acidbase status, and mineral metabolism of Holstein cows. J. Dairy Sci. 80:1207-1216.
  37. Sanchez, W. K., M. A. DeGroot, E. Block, D. Weber and K. R. Cummings. 2002. Production and economics responses of high production lactating dairy cows to increasing dietary cation anion difference during non-heat stress season. J. Dairy Sci. 85(Suppl.1) Abstract.
  38. Shahzad, M. A., M. Sarwar and M. Nisa. 2007a. Nutrient intake, acid base status and growth performance of growing male buffalo calves fed varying level of dietary cation anion difference. Livest. Sci. doi: 10. 1016/j . livsci. 2006. 12.011.
  39. Stacy, B. B. and B. W. Wilson. 1970. Acidosis and hypercalciuria: renal mechanisms affecting calcium, magnesium and sodium excretion in sheep. J. Physiol. 210:549-564.
  40. Tucker, W. B, J. F. Hogue, D. F. Waterman, T. S. Swenson, Z. Xin, R. W. Hemken, J. A. Jackson, J. D. Adams and L. J. Spicer. 1992. Sulfur should be included when calculating the dietary cation-anion balance of diets for lactating dairy cows. Anim. Sci. Res. Rep., Oklahoma Res. Stat., Oklahoma City, OK. pp. 141-150.
  41. West, J. W., K. D. Haydon and T. G. Sandifer. 1992. Dietary cation anion balance and cation source effects on production and acid-base status of heat stressed cows. J. Dairy Sci. 75:2776-2782.
  42. Waterman, D. F, S. A. Swenson, W. B. Tucker and R. T. Henkin. 1991. Role of Magnesium in the Dietary Cation-Anion Balance Equation for Ruminants. J. Dairy Sci. 74:1866-1873.
  43. Welbourne, T. C., G. Givens and S. Joshi. 1998. Renal ammoniagenic response to chronic acid loading: role of glucocorticoids. Anim. J. Physiol. 254, F134.
  44. Tucker, W. B., Z. Xin and R. W. Hemken. 1988. Influence of dietary calcium chloride on adoptive changes in acid-base status and mineral metabolism in lactating dairy cows. J. Dairy Sci. 71:1587-1592.
  45. Tucker, W. B., B. Z. Xin and R. W. Henken. 1991. Influence of calcium chloride on systemic acid-base status and calcium metabolism in dairy heifers. J. Dairy Sci. 74:1401-1411.
  46. West, J. W., B. J. Mullinix and T. G. Sandifer. 1991. Changing dietary electrolyte balance for dairy cows in cool and hot environments. J. Dairy Sci. 74:1662-1669.
  47. Nisa, M., M. A. Khan, M. Sarwar, M. Mushtaque, G. Murtaza, W. S. Lee and K. S. Kim. 2006. Influence of re-growth interval on chemical composition, herbage yield, and digestibility and digestion kinetics setaria sphacelata and cenchrus ciliaris in buffaloes. Asian-Aust. J. Anim. Sci. 19:381-385.
  48. Delaquis, A. M. and E. Block. 1995. Acid-base status. Renal function and macromineral metabolisrn of dry cows fed diets differing in cation-anion difference. J. Dairy Sci. 78:604-615.
  49. Nisa, M., M. Sarwar and M. A. Khan. 2004. Influence of ad libitum feeding of urea treated wheat straw with or without corn steep liquor on intake, insitu digestion kinetics, nitrogen metabolism and nutrient digestion in Nili Ravi buffalo bulls. Austr. J. Agric. Res. 55:229-236.
  50. Shahzad, M. A., M. Sarwar and M. Nisa. 2007b. Influence of varying dietary cation anion difference on serum minerals, mineral balance and hypocalcemia in Nili Ravi buffaloes. Livest. Sci. doi : 10. 1016 /j. livsci. 2007. 02.013.