Preparation and characterization of fullerene dimer [C120] by trichloroperbenzoic acid oxidation method

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Jung, Ah-Reum (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Ko, Weon-Bae (Department of Chemistry, Sahmyook University)
  • Received : 2007.03.05
  • Accepted : 2007.04.05
  • Published : 2007.04.28

Abstract

In this study, we present the preparation and characterization of oxidized fullerene and fullerene dimer [$C_{120}$]. From the XRD data, other weak peaks with pristine fullerene [$C_{60}$] peaks were observed in the X-ray diffraction patterns for fullerene dimer [$C_{120}$]. SEM micrographs for the fullerene dimer [$C_{120}$] indicated that practically all the surface state was shown the drastic morphology changes and its outer surface is clearly visible and resulted in clogging and frost-like formation. From the MALDI-TOF mass spectra, the differences in the spectra recorded on two kinds of fullerene are due to the oxidation including chemical bonding and bridging between the $C_{60}$ molecules. We also obtained additional information from FT-IR spectra on functional component on the chemically modified surface of oxidized fullerene and fullerene dimer [$C_{120}$].

Keywords

fullerene dimer [$C_{120}$];XRD;SEM;MALDI-TOF;FT-IR

References

  1. Z. Gu, L. Zhang, J.L. Margrave, V.A. Daveydov, A.V. Rakhmanina, V. Agafonov, V.N. Khabashesku, Carbon, 43, 2989 (2005) https://doi.org/10.1016/j.carbon.2005.06.012
  2. G. Cao, Nanostructures and nanomaterials, Imperial college press, p.230 (2004)
  3. K. Fujiwara, K. Komatsu, G.W. Wang, T. Tanaka, K. Hirata, K. Yamamoto, M. Saunders, J. Am. Chem. Soc., 123, 10715 (2001) https://doi.org/10.1021/ja011181n
  4. M. Sandahl, T. Anderson, K. Nilson, O. Wannerstrom, G. Westman, Synth. Met., 55, 3252 (1993)
  5. B. Burger, H. Kuzmany, T.M. Nguyen, H. Sitter, M. Walter, K. Martin, K. Kullen, Carbon, 36, 661 (1998)
  6. W.C. Oh, C.S. Park, J.S. Bae, Y.S. Ko, Carbon Science, 7, 1, 34 (2006)
  7. M. Fujitsuka, C.P. Luo, O. Ito, Y. Murata, K. Komatzu, J. Phys. Chem. A, 103, 7155 (1999) https://doi.org/10.1021/jp9845219
  8. V. Bijo, S. Barazzouk, K.G. Thomas, M.V. Gorge, P.V. Kamat, Langmuir, 17, 1930 (2001) https://doi.org/10.1021/la000758w
  9. R. Setton, P. Bernier, S. Lefrant, Carbon molecules and materials, Taylor & Francis, p.201 (1998)
  10. A.M. Vassallo, L.S.K. Pang, P.A. Cole-Clarke, M.A. Wililson, J. Am. Chem. Soc., 113, 7820 (1991)
  11. W.C. Oh, M.H. Yum, Bull. Korean Chem. Soc., 25, 8, 1189 (2004) https://doi.org/10.5012/bkcs.2004.25.8.1189
  12. S. Math, H. Pal, D.K. Palit, A.V. Sapre, J.P. Mittel, J. Phys. Chem. B, 102, 10158 (1998)
  13. P.V. Kamat, S. Barazzouk, K.G. Thomas, S. Hotchandani, J. Phy. Chem. B., 104, 4014 (2000)