Hydrolytic Kinetic Resolution of Racemic Alkyl-glycidyl Derivatives by using Dimeric Chiral Salen Catalyst Containing Ga, In and TlCl3

염화갈륨, 인듐 및 탈륨 함유 이분자형 키랄 살렌 촉매에 의한 라세믹 알킬 글리시딜레이트 유도체의 비대칭 가수분해반응

  • Shin, Chang-Kyo (Department of Chemical Engineering, Inha University) ;
  • Rahul, B. Kawthekar (Department of Chemical Engineering, Inha University) ;
  • Kim, Geon-Joong (Department of Chemical Engineering, Inha University)
  • 신창교 (인하대학교 생명화학공학부) ;
  • 카테카 라울 (인하대학교 생명화학공학부) ;
  • 김건중 (인하대학교 생명화학공학부)
  • Received : 2007.01.17
  • Accepted : 2007.02.22
  • Published : 2007.06.10

Abstract

The stereoselective synthesis of chiral terminal epoxides is of immense academic and industrial interest due to their utility as versatile starting materials as well as chiral intermediates. In this study, new dinuclear chiral Co (salen) complexes bearing gallium-, indium- and tallium-chloride have been synthesized and characterized. The mass and EXAFS spectra provided the direct evidence of formation of dinuclear complex. Their catalytic activity and selectivity have been demonstrated for the asymmetric ring opening of various terminal epoxides having ether or ester groups by hydrolytic kinetic resolution technology. The easily prepared dimeric complexes exhibited very high enantioselectivity for the asymmetric ring opening of epoxides with $H_2O$ nucleophile, providing enantiomerically enriched terminal epoxides (> 99% ee). The dimeric structured chiral salen showed remarkably enhanced reactivity and may be employed substantially lower loadings than its monomeric analogues. The system described in this work is very efficient for the synthesis of chiral epoxide and 1,2-diol intermediates

Keywords

chiral salen;asymmetric ring opening;epoxide;enantioselectivity

References

  1. S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, and E. N. Jacobsen, J. Am. Chem. Soc., 124, 1307 (2002) https://doi.org/10.1021/ja016737l
  2. S. J. Gluber, C. M. Harris, and E. Sinn, J. Chem. Phys., 49, 2183 (1969) https://doi.org/10.1063/1.1670383
  3. S. S. Thakur, W. Li, S. J. Kim, and G.-J. Kim, Tetrahedron Lett., 46, 2263 (2005)
  4. S. J. Gluber, C. M. Harris, and E. Sinn, Inorganic Chemistry, 7, 269 (1968)
  5. C. K. Shin, S. J. Kim, and G.-J. Kim, Tetrahedron Lett, 45, 7429 (2004)
  6. G. Reed, J. karl Konsler, and E. N. Jacobsen, J. Am. Chem. Soc., 120, 10780 (1998)
  7. J. F. Larrow and E. N. Jacobsen, Topics in Organomet. Chem., 6, 123 (2004)
  8. M. Shibasaki, H. Sasai, and T. Arai, Angew. Chem. Int. Ed., 36, 1236 (1997)
  9. J. M. Ready, and E. N. Jacobsen, J. Am. Chem. Soc., 123, 2687 (2001) https://doi.org/10.1021/ja005867b
  10. M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N. Jacobsen, Science, 277, 936 (1997)
  11. J. M. Ready, and E. N. Jacobsen, Angew. Chem. Int. Ed., 41, 1374 (2002) https://doi.org/10.1002/1521-3773(20020415)41:8<1374::AID-ANIE1374>3.0.CO;2-8
  12. R. A. Sheldon, Chirotechnology-Industrial Synthesis of Optical Active Compounds, Marcel Dekker, New York (1994)
  13. D. A. Annie and E. N. Jacobson, J. Am. Chem. Soc., 121, 4147 (1999)
  14. H. B. Kagan, Comprehensive Asymmetric Catalysis, eds. E. N. Jacobsen, A. Pfaltz, and H. Yamamoto, Chap.2, Springer, Heidelberg (1999)
  15. J. M. Keith, J. F. Larrow, and E. N. Jacobsen, Adv. Synth. Catal., 343, 5 (2001) https://doi.org/10.1002/1615-4169(20010129)343:1<5::AID-ADSC5>3.0.CO;2-I
  16. M. E. Furrow, S. E. Schaus, and E. N. Jacobsen, J. Org. Chem., 63, 6776 (1998)