Thermophysical Properties of 4D Carbon/Carbon Composites with Preform Architectures

프리폼 구조에 따른 4방향성 탄소/탄소 복합재의 열물리적 특성

  • Kim, Zeong-Baek (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Lee, Ki-Woong (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Park, Jong-Min (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Joo, Hyeok-Jong (Department of Polymer Science and Engineering, Chungnam National University)
  • 김정백 (충남대학교 고분자공학과) ;
  • 이기웅 (충남대학교 고분자공학과) ;
  • 박종민 (충남대학교 고분자공학과) ;
  • 주혁종 (충남대학교 고분자공학과)
  • Received : 2007.07.11
  • Accepted : 2007.10.30
  • Published : 2007.12.10

Abstract

In this study, 4 directional carbon/carbon composites with different preform architectures were manufactured and their thermophysical properties are studied. Carbon fiber preforms are fabricated with fiber bundles using four different spaces. The density of the fabricated preforms were increased through pressure impregnation and carbonizing process. The increased density of the composites was graphitized at $2300^{\circ}C$. Microstructures of these composite were observed under scanning electron microscope. This was to understand the effect the preform architectures has on the thermophysical properties of carbon/carbon composites. Also, the behavior of thermal conduction and heat expansion was investigated and studied in association with the factors of the reinforced direction of fibers and unit cell of preforms.

Acknowledgement

Supported by : 한국항공우주연구원

References

  1. E. Fitzer and L. M. Manocha, Mechanical properties of carbon/carbon composites. In: Carbon fiber reinforcement and carbon/carbon composites, 190, Springer, Berlin (1998)
  2. J. Schulte-Fischdick, A. Zern, J. Mayer, M. Rühle, M. Friess, W. Krenkel, and R. Kochendorfer, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332, 146 (2002)
  3. O. Siron, G. chollon, H. Tsuda, H. Yamauchi, K. Maeda, and K. Kosaka, Carbon, 38, 1369 (2000) https://doi.org/10.1016/S0008-6223(99)00270-5
  4. R. Ruo, T. Liu, J. Li, H. Zhang, Z. Chen, and G. Tian, Carbon, 42, 2887 (2004) https://doi.org/10.1016/j.carbon.2004.06.024
  5. H. Tawil, L. D. Bentsen, S. Baskaran, and D. P. H. Hasselman, J. Mater. Sci., 20, 3201 (1985) https://doi.org/10.1007/BF00545186
  6. T. Oku, A. Kurumada, T. Sogabe, T. Oku, T. Hiraoka, and K. Kuroda, J. Nucl. Mater., 257, 59 (1998)
  7. L. M. Manocha, A. Warrier, S. Manocha, D. Sathiyamoorthy, and S. Banerjee, Carbon, 44, 480 (2006) https://doi.org/10.1016/j.carbon.2005.08.012
  8. R. I. Baxter, R. D. Rawlings, N. Iwashita, and Y. Sawada, Carbon, 38, 441 (2000) https://doi.org/10.1016/S0008-6223(99)00125-6
  9. Y. J. Lee and H. J. Joo, Compos. Pt. A-Appl. Sci. Manuf., 35, 1285 (2004)
  10. H. J. Joo, S. H. Ryu, and H. S. Ha, Carbon Science, 1, 158 (2001)
  11. K. Y. Sheem, I. S. Oh, D. M. Choi, H. J. Joo, and B. I. Yoon, J. Korean Soc. Compos. Mater., 8, 9 (1995)
  12. K. Lafdi, A. Chin, and C. Bourgerette, Proceedings of the 22nd Biennial Conference on American Carbon Society, San Diego, CA, 92 (1995)
  13. A. J. Whittaker, R. Taylor, and H. Tawil, Proc. R. Soc. of London A-Math. Phys. Eng. Sci., 430, 167 (1990)
  14. J. D. Zhang, Modern Composites, 78, Matter Press of China, Beijing (1997)
  15. E. G. Steward, B. P. Look, and E. A. Kellett, Nature, 187, 1015 (1960) https://doi.org/10.1038/1871015a0
  16. D. K. L. Tsang, B. J. Marsden, S. L. Fok, and G. Hall, Carbon, 43, 2902 (2005) https://doi.org/10.1016/j.carbon.2005.06.009