Synthesis of NaY Zeolites by Microwave and Conventional Heating

마이크로파 및 기존 가열 방법에 의한 제올라이트 NaY의 합성

  • Choi, Ko-Yeol (Department of Chemical Engineering, Seoul National University of Technology) ;
  • Conner, W. Curtis (Department of Chemical Engineering, University of Massachusetts)
  • 최고열 (서울산업대학교 화학공학과) ;
  • Received : 2007.05.03
  • Accepted : 2007.07.18
  • Published : 2007.08.10

Abstract

NaY zeolites synthesized by microwave heating were compared with those obtained by conventional heating. When the same temperature increasing rates were adopted in both heating methods, the microwave heating shortened the induction period and enhanced the rate of crystallization of NaY zeolites compared with the conventional heating. Irrespective of microwave radiation, the fast temperature increasing rate also shortened the induction time and enhanced the crystallization of NaY zeolites. The crystal sizes of NaY zeolites were large under the fast temperature raise of the reaction mixture and became larger by microwave radiation. At the same time, the fast temperature increasing rate has reduced the energy consumption due to the fast completion of reaction during the synthesis of NaY zeolite. The energy consumption in the conventional ethylene glycol bath was lower than that in the microwave oven with the same temperature increasing rate in this study, which means that the energy efficiency is not always high in microwave heating. If the temperature increasing rate is carefully controlled, however, NaY zeolite can be produced with high energy efficiency in the microwave oven.

Keywords

microwave heating;NaY zeolite;temperature increasing rate;energy efficiency

References

  1. M. D. Romero, J. M. Gómez, G. Ovejero, and A. Rodríuez, Mater. Res. Bull., 39(3), 389 (2004) https://doi.org/10.1016/j.materresbull.2003.10.018
  2. Y. K. Hwang, J. S. Chang, S. E. Park, D. S. Kim, Y. U. Kwon, S. H. Jhung, J. S. Hwang, and M. S. Park, Angew. Chem. Int. Ed., 44, 556 (2005) https://doi.org/10.1002/anie.200461403
  3. J. Motuzas, A. Julbe, R. D. Noble, C. Guizard, Z. J. Beresnevicius, and D. Cot, Microporous and Mesoporous Materials, 80, 73 (2005) https://doi.org/10.1016/j.micromeso.2004.12.002
  4. I. Girnus, K. Jancke, R. Vetter, J. R. Mendau, and J. Caro, Zeolites, 15(1), 33 (1995)
  5. H. Katsuki, S. Furuta, and S. Komarneni, J. Porous Material, 8, 5 (2001) https://doi.org/10.1023/A:1026583832734
  6. P. Lidstrom, J. Tirney, B. Wathey, and J. Westman, Tetrahedron, 57, 9225 (2001) https://doi.org/10.1016/S0040-4020(01)00906-1
  7. G. A. Tompsett, W. C. Conner, and K. S. Yngvesson, ChemPhys Chem, 7, 296 (2006) https://doi.org/10.1002/cphc.200500449
  8. A. Dyer, An Introduction to Zeolite Molecular Sieves, 12, J. Wiley, New York (1988)
  9. L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001) https://doi.org/10.1016/S0040-4020(01)00905-X
  10. M. A. Uguina, D. P. Serrano, R. Sanz, and E. Castillo, Proc. 12th Intern. Zeolite Conference, eds. M. M. J. Treacy, B. K. Marcus, M. E. Bisher, and J. B. Higgins, 1917, Baltimore, U. S. A. (1998)
  11. J. C. Jansen and S. T. Wilson, Introduction to Zeolite Science and Practice, eds. H. V. Bekkum, E. M. Flanugen, and J. C. Jansen, 58, 77, Elsevier, Amsterdam (1991)
  12. P. Phiriyawirut, R. Magaraphan, A. M. Jamieson, and S. Wongkasemjit, Mater. Sci. Eng., A361, 147 (2003)
  13. D. S. Kim, J. S. Chang, J. S. Hwang, S. E. Park, and J. M. Park, Microporous and Mesoporous Materials, 68, 77 (2004) https://doi.org/10.1016/j.micromeso.2003.11.017
  14. M. Sathupunya, E. Gulari, and S. Wongkasemjit, J. European Ceramic Society, 23, 1293 (2003) https://doi.org/10.1016/S0955-2219(02)00287-X