Preparation of Kenyaite/epoxy Nanocomposite from Pulverization of Kenyaite

분쇄된 Kenyaite를 이용한 Kenyaite/epoxy 나노복합체 제조

  • Joo, Eul-Rea (New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Jeong, Soon-Yong (New Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Oh, Seong-Geun (Department of Chemical Engineering, Hanyang University) ;
  • Kwon, Oh-Yun (Department of Chemical System Engineering, Chonnam National University)
  • 주을래 (한국화학연구원 신화학연구단) ;
  • 정순용 (한국화학연구원 신화학연구단) ;
  • 오성근 (한양대학교 화학공학과) ;
  • 권오윤 (전남대학교 화학시스템공학과)
  • Received : 2006.10.16
  • Accepted : 2006.12.14
  • Published : 2007.02.10

Abstract

Pulverization characteristics of H-kenyaite in vibration mill and exfoliation property in epoxy of pulverized H-kenyaite was investigated by using XRD, SEM, TEM. and particle size analyzer. Pulverization was conducted for 0.5~5 h. The particle morphology of sample pulverized for 1 h preserved plate-shape. However, this plate-shape disappeared in the sample pulverized for 3 h. The XRD pattern of sample pulverized for 1 h showed the characteristic peak of H-kenyaite. However, the peak disappeared in samples pulverized above 3 h, indicating severe destruction of H-kenyaite structure. TEM analysis for the kenyaite/epoxy nanocomposites exhibited only gallery expansion of 3~5 nm in non-pulverized sample, but dramatical large expansion of 5~10 nm in the samples pulverized during 1 h. This results confirm that the pulverization of wide plates composed of H-kenyaite particle have largely affect on the formation of an exfoliated kenyaite-polymer nanocomposite.

References

  1. P. C. LeBaron, Z. W. Wang, and T. J. Pinnavia, Appl. Clay. Sci., 15, 253 (1999)
  2. Z. W. Wang and T. J. Pinanavaia, Chem. Mater., 10, 1820 (1998)
  3. T. J. Pinnavaia, Intercalated clay catalysts, Science, 220, 365 (1983) https://doi.org/10.1126/science.220.4595.365
  4. M. Kato and A. Katahira, Edit by T. J. Pinnavaia, and G. W. Beall, 97, Wiley Series in Polymer Science, Australia (2000)
  5. H. P. Eugster, Science, 157, 1177 (1967) https://doi.org/10.1126/science.157.3793.1177
  6. J. L. Mcatee and H. P. Eugster, Amer. Mineral., 53, 2061 (1968)
  7. T. P. Rooney, B. F. Jones, and J. T. Neat, Amer. Mineral., 54, 1034 (1969)
  8. G. Lagaly, K. Beneke, and A. Weiss, Proceedings International Clay Conference, Madrid 1972, 662 Division de Ciencias C.S.I.C., Madrid (1973)
  9. G. Lagaly and K. Beneke, Amer. Miner., 60, 642 (1975)
  10. K. Beneke, and G. Lagaly, Amer. Mineral., 68, 818 (1983)
  11. R. A. Fletcher and D. M. Bibby, Clays and Clay Mineral., 35, 318 (1987) https://doi.org/10.1346/CCMN.1987.0350410
  12. H. Muraishi, Chem. Mater., 4, 855 (1992) https://doi.org/10.1021/cm00022a022
  13. O. Y. Kwon, S. Y. Jeong, J. K. Suh, and J. M. Lee, Bull. Korean. Chem. Soc., 20, 69 (1999)
  14. O. Y. Kwon, K. W. Park, and U. H. Paek, J. Korean Association Crystal Growth, 9, 70 (1999)
  15. A. Brandt, W. Schwieger, and K. H. Bergk, Rev. Chem. Miner., 24, 564 (1987)
  16. R. E. Grim, Clay Mineralogy, 2nd ed, 51, McGraw-Hill Inc., New York (1968)
  17. O. Y. Kwon, S. Y. Jeong, M. W. Han, and E. I. Jeong, J. Korean Ind. Eng. Chem., 7, 927 (2003)
  18. O. Y. Kwon and S. W. Choi, Bulletin Korean Chem. Soc., 20, 69 (1999)
  19. G. S. Garavajal, D. E. Lyden, G. R. Quinting, and G. E. Maciel, Anal. Chem., 60, 1776 (1988) https://doi.org/10.1021/ac00168a027
  20. D. J. Kelly and D. E. Leyden, J. Colloid Interface Sci., 147, 213 (1991) https://doi.org/10.1016/0021-9797(91)90149-3
  21. N. R. E. N. Impens, P. van der Voort, and E. F. Vansant, Microporous and Mesoporous Mater., 28, 217 (1999)